首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3774篇
  免费   159篇
  国内免费   34篇
化学   2470篇
晶体学   17篇
力学   89篇
数学   547篇
物理学   844篇
  2024年   5篇
  2023年   22篇
  2022年   60篇
  2021年   144篇
  2020年   103篇
  2019年   159篇
  2018年   138篇
  2017年   124篇
  2016年   181篇
  2015年   129篇
  2014年   163篇
  2013年   218篇
  2012年   305篇
  2011年   325篇
  2010年   172篇
  2009年   182篇
  2008年   268篇
  2007年   238篇
  2006年   214篇
  2005年   189篇
  2004年   152篇
  2003年   101篇
  2002年   99篇
  2001年   37篇
  2000年   31篇
  1999年   34篇
  1998年   28篇
  1997年   29篇
  1996年   28篇
  1995年   14篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有3967条查询结果,搜索用时 145 毫秒
951.
The biopolymer (polyhydroxybutyrate) microparticles-calcium phosphate composites were prepared by mechanical mixing of the basic composite components with the addition of hardening liquid after ethanol-composite mixture suspension moulding. The composite microstructures were more compact than the pure cement samples as confirmed by the lower values of specific areas and mesopore volumes. Both the specific areas and mesopore volumes decreased with soaking time in a simulated body fluid. The low polyhydroxybutyrate degradation in composites was found after soaking in simulated body fluid, which was terminated after one week. The formation of a dense apatite layer bonded directly to the surface of polyhydroxybutyrate microparticles was observed. The highest diametral tensile strength (13 MPa) and compressive strength (95 MPa) values of up to 50 % higher than in pure cement were measured in samples with 10 % of polyhydroxybutyrate. The addition of polyhydroxybutyrate microparticles had no effect on the setting time.  相似文献   
952.
Chemistry of Heterocyclic Compounds - A method for the synthesis of berberine 13-vinyl derivatives has been developed consisting of an initial reaction of triethyl orthoformate with CH acids in the...  相似文献   
953.
The transition metal compounds Pd(OAc)2, RhCl3·4H2O and RuCl3 · nH2O were adsorbed onto the nanoporous silica polyamine composite (SPC) particles (150–250 µm), WP‐1 [poly(ethyleneimine) on amorphous silica], BP‐1 [poly(allylamine) on amorphous silica], WP‐2 (WP‐1 modified with chloroacetic acid) and BP‐2 (BP‐1 modified with chloroacetic acid). Inductively coupled plasma‐atomic emission spectrometry analysis of the dried samples after digestion indicated metal loadings of 0.4–1.2 mmol g?1 except for RhCl3·4H2O on BP‐2 which showed a metal loading of only 0.1 mmol g?1. The metal loaded composites were then screened as hydrogenation catalysts for the reduction of 1‐octene, 1‐decene, 1‐hexene and 1, 3‐cyclohexadiene at a hydrogen pressure of 5 atm in the temperature range of 50–90 °C. All 12 combinations of SPC and transition metal compound proved active for the reduction of the terminal olefins, but isomerization to internal alkenes was competitive in all cases. Under these conditions, selective hydrogenation of 1,3‐cyclohexadiene to cyclohexene was observed with some of the catalysts. Turnover frequencies were estimated for the hydrogenation reactions based on the metal loading and were in some cases comparable to more conventional heterogeneous hydrogenation catalysts. Examination of the catalysts before and after reaction with X‐ray photoelectron spectroscopy and transmission electron microscopy revealed that, in the cases of Pd(OAc)2 on WP‐2, BP‐1 and BP‐2, conversion of the surface‐ligand bound metal ions to metal nano‐particles occurs. This was not the case for Pd(OAc)2 on WP‐1 or for RuCl3 · nH2O and RhCl3· 4H2O on all four composites. The overall results are discussed in terms of differences in metal ion coordination modes for the composite transition‐metal combinations. Suggested ligand interactions are supported by solid state CPMAS 13C NMR analyses and by analogy with previous structural investigations of metal binding modes on these composite materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
954.
Anikin  A. A.  Zalialiutdinov  T. A.  Solovyev  D. A. 《JETP Letters》2021,114(4):180-187
JETP Letters - A discrepancy of 4σ (σ is the standard deviation) between the proton radii obtained by measuring transition frequencies in electron (H) and muonic (µH) hydrogen atoms...  相似文献   
955.
956.

Understanding pore-scale flow and transport processes is important for understanding flow and transport within rocks on a larger scale. Flow experiments on small-scale micromodels can be used to experimentally investigate pore-scale flow. Current manufacturing methods of micromodels are costly and time consuming. 3D printing is an alternative method for the production of micromodels. We have been able to visualise small-scale, single-phase flow and transport processes within a 3D printed micromodel using a custom-built visualisation cell. Results have been compared with the same experiments run on a micromodel with the same geometry made from polymethyl methacrylate (PMMA, also known as Perspex). Numerical simulations of the experiments indicate that differences in experimental results between the 3D printed micromodel and the Perspex micromodel may be due to variability in print geometry and surface properties between the samples. 3D printing technology looks promising as a micromodel manufacturing method; however, further work is needed to improve the accuracy and quality of 3D printed models in terms of geometry and surface roughness.

  相似文献   
957.
958.
Journal of Experimental and Theoretical Physics - Recently, the problem of spin and orbital angular momentum (AM) separation has widely been discussed. Nowadays, all discussions about the...  相似文献   
959.
960.
Journal of Solid State Electrochemistry - In order to satisfy a growing demand for energy storage devices and to create safer and less expensive batteries with high capacity, materials based on...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号