全文获取类型
收费全文 | 223篇 |
免费 | 5篇 |
专业分类
化学 | 143篇 |
晶体学 | 1篇 |
力学 | 4篇 |
数学 | 16篇 |
物理学 | 64篇 |
出版年
2024年 | 2篇 |
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 10篇 |
2015年 | 8篇 |
2014年 | 12篇 |
2013年 | 10篇 |
2012年 | 15篇 |
2011年 | 17篇 |
2010年 | 6篇 |
2009年 | 7篇 |
2008年 | 11篇 |
2007年 | 14篇 |
2006年 | 12篇 |
2005年 | 21篇 |
2004年 | 8篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 1篇 |
1999年 | 5篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1981年 | 2篇 |
1962年 | 1篇 |
1961年 | 1篇 |
1956年 | 1篇 |
排序方式: 共有228条查询结果,搜索用时 15 毫秒
91.
Transport properties of particles and waves in spatially periodic structures that are driven by external time-dependent forces manifestly depend on the space–time symmetries of the corresponding equations of motion. A systematic analysis of these symmetries uncovers the conditions necessary for obtaining directed transport. In this work we give a unified introduction into the symmetry analysis and demonstrate its action on the motion in one-dimensional periodic, both in time and space, potentials. We further generalize the analysis to quasi-periodic drives, higher space dimensions, and quantum dynamics. Recent experimental results on the transport of cold and ultracold atomic ensembles in ac-driven optical potentials are reviewed as illustrations of theoretical considerations. 相似文献
92.
Sergej Rackwitz Isabelle Faus Markus Schmitz Harald Kelm Hans-Jörg Krüger K. Kristoffer Andersson Hans-Petter Hersleth Klaus Achterhold Kai Schlage Hans-Christian Wille Volker Schünemann Juliusz A. Wolny 《Hyperfine Interactions》2014,226(1-3):673-678
In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal. 相似文献
93.
Perzlmaier K Buess M Back CH Demidov VE Hillebrands B Demokritov SO 《Physical review letters》2005,94(5):057202
Quantized spin-wave eigenmodes in single, 16 nm thick and 0.75 to 4 mum wide square permalloy islands with a fourfold closure domain structure have been investigated by microfocus Brillouin light scattering spectroscopy and time resolved scanning magneto-optical Kerr microscopy. Up to six eigenmodes were detected and classified. The main direction of the spin-wave quantization in the domains was found to be perpendicular to the local static magnetization. An additional less pronounced quantization along the direction parallel to the static magnetization was also observed. 相似文献
94.
Using a novel approach to calculate optical properties of strongly correlated systems, we address the old question of the physical origin of the alpha--> gamma transition in Ce. We find that the Kondo collapse model, involving both the f and the spd electrons, describes the optical data better than a Mott transition picture involving the f electrons only. Our results compare well with existing experiments on thin films. We predict the full temperature dependence of the optical spectra and find the development of a hybridization pseudogap in the vicinity of the alpha--> gamma phase transition. 相似文献
95.
We propose a setup to observe soliton ratchet effects using discrete cavity solitons in a 1D array of coupled waveguide optical resonators. The net motion of solitons can be generated by an adiabatic shaking of the holding beam with zero average inclination angle. The resulting soliton velocity can be controlled by different parameters of the holding beam. 相似文献
96.
Ab initio molecular orbital and hybrid density functional methods have been employed to characterize the structure and bonding of (H2O-H2S)+, an asymmetrical dimer radical cation system. A comparison has been made between the two-center three-electron (2c-3e) hemi-bonded system and the proton-transferred hydrogen-bonded systems of (H2O-H2S)+. Geometry optimization of these systems was carried out using unrestricted Hartree Fock (HF), density functional theory with different functionals, and second-order M?ller-Plesset perturbation (MP2) methods with 6-311++G(d,p) basis set. Hessian calculations have been done at the same level to check the nature of the equilibrium geometry. Energy data were further improved by calculating basis set superposition error for the structures optimized through MP2/6-311++G(d,p) calculations. The calculated results show that the dimer radical cation structure with H2O as proton acceptor is more stable than those structures in which H2O acts as a proton donor or the 2c-3e hemi-bonded (H2O thereforeSH2)+ system. This stability trend has been further confirmed by more accurate G3, G3B3, and CCSD(T) methods. On the basis of the present calculated results, the structure of H4OS+ can best be described as a hydrogen-bonded complex of H3O+ and SH with H2O as a proton acceptor. It is in contrast to the structure of neutral (H2O...H2S) dimer where H2O acts as a proton donor. The present work has been able to resolve the ambiguity in the nature of bonding between H2O and H2S in (H2O-H2S)+ asymmetrical dimer radical cation. 相似文献
97.
Martin Rudolph Peter Birtel Thomas Arnold Andrea Prager Sergej Naumov Ulrike Helmstedt André Anders Patrick C. With 《Plasma Processes and Polymers》2023,20(5):2200229
We study the conversion of two polymeric silicon precursor compound layers (perhydropolysilazane and polydimethylsiloxane) on a silicon wafer and polyethylene terephthalate substrates to silicon oxide thin films using a pulsed atmospheric pressure plasma jet. Varying the scan velocity and the number of treatments results in various film compositions, as determined by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The mechanism suggested for the conversion process includes the decomposition of the precursor triggered by plasma-produced species, the oxidation of the surface, and finally, the diffusion of oxygen into the film, while gases produced during the precursor decomposition diffuse out of the film. The latter process is possibly facilitated by local plasma heating of the surface. The precursor conversion appears to depend sensitively on the balance between the different contributions to the conversion mechanism. 相似文献
98.
We treat the nonlinear Klein-Gordon (NKG) equation as the Sine-Gordon (SG) equation, perturbed by a higher order term. It
is proved that most small-amplitude finite-gap solutions of the SG equation, which satisfy either Dirichlet or Neumann boundary
conditions, persist in the NKG equation and jointly form partial central manifolds, which are “Lipschitz manifolds with holes”.
Our proof is based on an analysis of the finite-gap solutions of the boundary problems for SG equation by means of the Schottky
uniformization approach, and an application of an infinite-dimensional KAM-theory.
The first author was supported by the Alexander von Humbold Foundation and the Sonder-forschungsbereich 288. 相似文献
99.
Makogon O Flyunt R Tobien T Naumov S Bonifacić M 《The journal of physical chemistry. A》2008,112(26):5908-5916
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed. 相似文献
100.
The primary products of the bimolecular free electron transfer (FET) from aromatic sulfides (PhSCH2Ph, PhSCHPh2, PhSCPh3) to n-butyl chloride radical cations are two radical cation conformers: a dissociative and a metastable one. In analogy with formerly studied donor systems, this result seems to reflect femtosecond oscillations in the ground state of the sulfides such as torsion motions around the Ar-S bond. This motion is accompanied by a marked electron fluctuation within the HOMO (or the n) orbitals. The FET products observed in the nanosecond time scale such as the metastable sulfide radical cations (Ar-S-CR3*+), the dissociation products R3C+; and R3C*, and their (experimentally) nondetectable counterparts Ar-S* as well as Ar-S+ can be understood with the simplified assumption of two extreme conformations, namely a planar and a twisted donor molecule. Using mediator radical cations (benzene, butylbenzene, biphenyl), the stepwise reduction of the free energy of the electron transfer from -DeltaH = 2.5 to 相似文献