首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1866篇
  免费   51篇
  国内免费   21篇
化学   1130篇
晶体学   5篇
力学   65篇
数学   291篇
物理学   447篇
  2024年   2篇
  2023年   13篇
  2022年   30篇
  2021年   30篇
  2020年   43篇
  2019年   52篇
  2018年   43篇
  2017年   36篇
  2016年   63篇
  2015年   55篇
  2014年   53篇
  2013年   128篇
  2012年   101篇
  2011年   121篇
  2010年   80篇
  2009年   67篇
  2008年   137篇
  2007年   127篇
  2006年   131篇
  2005年   122篇
  2004年   96篇
  2003年   72篇
  2002年   77篇
  2001年   39篇
  2000年   22篇
  1999年   23篇
  1998年   25篇
  1997年   27篇
  1996年   27篇
  1995年   18篇
  1994年   12篇
  1993年   12篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   9篇
  1981年   4篇
  1980年   1篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有1938条查询结果,搜索用时 31 毫秒
51.
The abnormal physicochemical characteristics of ethanol solvation in water are commonly attributed to the phenomenon of hydrophobic hydration. To investigate the structural organization of hydrophobic hydration in water-ethanol mixtures, we use molecular dynamics simulations based on detailed atomic models. Induced polarization is incorporated into the potential function on the basis of the classical Drude oscillator model. Water-ethanol mixtures are simulated at 11 ethanol molar fractions, from 0.05 to 0.9. Although the water and ethanol models are parametrized separately to reproduce the vaporization enthalpy, static dielectric constant, and self-diffusion constant of neat liquids at ambient conditions, they also reproduce the energetic and dynamical properties of the mixtures accurately. Furthermore, the calculated dielectric constant for the various water-alcohol mixtures is in excellent agreement with experimental data. The simulations provide a detailed structural characterization of the mixtures. A depletion of water-water hydrogen bonding in the first hydration shell of ethanol is compensated by an enhancement in the second hydration shell. The structuring effect from the second solvation shell gives rise to a net positive hydrogen-bonding excess for ethanol molar fractions up to approximately 0.5. For larger molar fractions, the second hydration shell is not sufficiently populated to overcome the net H-bond depletion from the first shell.  相似文献   
52.
The enthalpies of formation [Delta(g)] of tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),10(14),11-heptaene (2, 1,2-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1-ene) and tricyclo[8.2.2.2(4,7)]hexadeca-1(13),2,4(16),5,7(15),8,10(14),11-octaene (3, 1,2,9,10-dehydro[2.2]paracyclophane or [2.2]paracyclophane-1,9-diene) have been determined by measuring their heats of combustion in a microcalorimeter and their heats of sublimation by the transpiration method. Values of the strain energies (SE) [SE(2) = 34.7 kcal mol(-)(1), SE(3) = 42.0 kcal mol(-)(1)] have been derived from the gas-phase heats of formation and are compared with those from MM3 and PM3 calculations and with the corresponding value SE(1) = 30.1 kcal mol(-)(1) for the parent tricyclo[8.2.2.2(4,7)]hexadeca-1(13),4(16),5,7(15),10(14),11-hexaene (1, [2.2]paracyclophane). The higher strain energies of 2 and 3 (by 4.6 and 11.9 kcal mol(-)(1)) are in accord with the well-known increased reactivities of their aromatic rings as a consequence of their increased bending. As revealed by an X-ray crystal structure analysis, the bending in the monoene 2 corresponds to that of 1 and 3 at one of two bridging corners.  相似文献   
53.
Electron spin-echo envelope modulation (ESEEM) spectroscopy of phospholipids spin-labeled systematically down the sn-2 chain was used to detect the penetration of water (D2O) into bilayer membranes of dipalmitoyl phosphatidylcholine with and without 50 mol % cholesterol. Three-pulse stimulated echoes allow the resolution of two superimposed 2H-ESEEM spectral components of different widths, for spin labels located in the upper part of the lipid chains. Quantum chemical calculations (DFT) and ESEEM simulations assign the broad spectral component to one or two D2O molecules that are directly hydrogen bonded to the N-O group of the spin label. Classical ESEEM simulations establish that the narrow spectral component arises from nonbonded water (D2O) molecules that are free in the hydrocarbon chain region of the bilayer membrane. The amplitudes of the broad 2H-ESEEM spectral component correlate directly with those of the narrow component for spin labels at different positions down the lipid chain, reflecting the local H-bonding equilibria. The D2O-ESEEM amplitudes decrease with position down the chain toward the bilayer center, displaying a sigmoidal dependence on position that is characteristic of transmembrane polarity profiles established by other less direct spin-labeling methods. The midpoint of the sigmoidal profile is shifted toward the membrane center for membranes without cholesterol, relative to those with cholesterol, and the D2O-ESEEM amplitude in the outer regions of the chain is greater in the presence of cholesterol than in its absence. For both membrane types, the D2O amplitude is almost vanishingly small at the bilayer center. The water-penetration profiles reverse correlate with the lipid-chain packing density, as reflected by 1H-ESEEM intensities from protons of the membrane matrix. An analysis of the H-bonding equilibria provides essential information on the binding of water molecules to H-bond acceptors within the hydrophobic interior of membranes. For membranes containing cholesterol, approximately 40% of the nitroxides in the region adjacent to the lipid headgroups are H bonded to water, of which ca. 15% are doubly H bonded. Corresponding H-bonded populations in membranes without cholesterol are ca. 20%, of which ca. 6% are doubly bonded.  相似文献   
54.
We report a theoretical study of the ground electronic state of BiH3. The potential energy surface (PES) is obtained from coupled cluster CCSD(T) calculations with a large basis set (289 contracted Gaussian functions). The previously available quartic force field (P4) is extended by adding the dominant quintic and sextic stretching terms to yield improved potential functions in symmetry coordinates (P6) and Morse-type coordinates (M4). Second-order rovibrational perturbation calculations on the P4-PES and full variational calculations on the P6-PES and M4-PES yield almost identical vibrational term values which is rationalized by considering the local mode behavior of BiH3 and the Morse-type character of the M4-PES. The remaining deviations between the computed and observed vibrational term values must thus be caused by imperfections in the CCSD(T) surface. A refinement of this ab initio surface by a restrained fit to experimental data allows an essentially perfect reproduction of the observed vibrational term values. Variational calculations on this refined surface provide predictions for several overtone and combination bands that have not yet been observed. Dedicated to Hermann Stoll on the occasion of his 60th birthday  相似文献   
55.
The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential V(A) on a one-atom density rho(A) or rho(B). To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale.  相似文献   
56.
The complete absolute configuration of hormaomycin 1 a has been established by HPLC and HPLC/MS experiments with appropriately derivatized 4-propylprolines, (2S,4S)-6 and (2R,4R)-6, as well as 4-(Z)-propenylprolines, cis-5 and trans-5, and also feeding experiments with enantiomerically pure samples of the deuterium-labeled 3-(2'-nitrocyclopropyl)alanine, (2S)-3,3-[D2]15 and (2S)-2,2'-[D2]15, and 4-(Z)-propenylproline 2',4-[D2]-(2S,4R)-5. The latter five amino acids were prepared for the first time and allowed one to unequivocally assign the hitherto unknown absolute configurations of the last four stereocenters in hormaomycin 1 a. As a bonus, some new information about the biosynthesis of this molecule has also been gathered.  相似文献   
57.
A fast centroid molecular dynamics (CMD) methodology is proposed in which the effective centroid forces are predetermined through a force-matching algorithm applied to a standard path integral molecular dynamics simulation. The resulting method greatly reduces the computational cost of generating centroid trajectories, thus extending the applicability of CMD. The method is applied to the study of liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point. The static and dynamical results are compared to those obtained from full adiabatic CMD simulations and found to be in excellent agreement for all three systems; the transport properties are also compared to experiment and found to have a similar level of agreement.  相似文献   
58.
Using quantitative difference IR spectroscopy we have found that the tibutyl phosphate & acts of zirconium from 12–15 M HN03 contain ionic associates [(TBP)2H+]Zr(NO3)5 (I) and [TBP· H30+ (H20)n]Zr(N03)5 (II), where n = 1, 2, as well as the Zr(N03)4(TBP)2 complex at a lower concentration than (I) and (I.). The equilibrium I II is shifted toward II at higher CHNo 3 0 and lower cZr 0. The structure of associates I and II is discussed.Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, D. I. Mendeleev Moscow Chemical Technological Institute. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 5, pp. 80–89, September–October, 1993.Translated by L. Smolina  相似文献   
59.
1H and 15N NMR spectra of 10 complexes exhibiting strong OHN hydrogen bonds formed by 15N-labeled collidine and different proton donors, partially deuterated in mobile proton sites, have been observed by low-temperature NMR spectroscopy using a low-freezing CDF3/CDF2Cl mixture as polar aprotic solvent. The following proton donors have been used: HCl, formic acid, acetic acid, various substituted benzoic acids and HBF4. The slow hydrogen bond exchange regime could be reached below 140 K, which allowed us to resolve 15N signal splittings due to H/D isotopic substitution. The valence bond order model is used to link the observed NMR parameters to hydrogen bond geometries. The results are compared to those obtained previously [Magn. Reson. Chem. 39 (2001) S18] for the same complexes in the organic solids. The increase of the dielectric constant from the organic solids to the solution (30 at 130 K) leads to a change of the hydrogen bond geometries along the geometric correlation line towards the zwitterionic structures, where the proton is partially transferred from oxygen to nitrogen. Whereas the changes of spectroscopic and, hence, geometric parameters are small for the systems which are already zwitterionic in the solid state, large changes are observed for molecular complexes which exhibit almost a full proton transfer from oxygen to nitrogen in the polar liquid solvent.  相似文献   
60.
Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号