首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   17篇
化学   170篇
晶体学   5篇
力学   5篇
数学   45篇
物理学   55篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   10篇
  2019年   17篇
  2018年   8篇
  2017年   11篇
  2016年   19篇
  2015年   13篇
  2014年   13篇
  2013年   31篇
  2012年   19篇
  2011年   30篇
  2010年   15篇
  2009年   10篇
  2008年   18篇
  2007年   13篇
  2006年   13篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
271.
Dependence of colloidal interactions on salt identity, observed frequently in experiments, can be accounted for once ion specific non-electrostatic forces are included in the theory. Ability to predict the effect of added salt on the phase diagram of colloid dispersions is essential for the design of processes involving nanocolloids. The Ornstein–Zernike equation with hypernetted chain closure approximation provides a viable first estimate for the potential of mean force between ionized nanoparticles like alumina aggregates in aqueous electrolytes subject to dispersion interactions with hydrated simple ions. Calculated potentials of mean force enable the prediction of osmotic second virial coefficients and phase diagrams showing a dramatic dependence on ion type. The choice of salt therefore provides an efficient, non-intrusive way to tune the phase behavior of nanoparticle dispersions.  相似文献   
272.
The optical properties of sulfonated polyaniline (SPAN) thin film prepared by electrochemical method have been investigated. Polychromic behavior of SPAN thin film (transparent yellow-green-dark blue) was observed when the cyclic voltammograms were taken between -0.25 V and +1.90 V (vs. Ag/AgCl, sat.) during the growth of polyaniline film. In situ UV-vis spectra of the polymers-indium tin oxide (ITO) glass electrode were taken during the oxidation of the polymers at different applied potentials. The direct band gap values of SPAN thin film changed from 3.771 eV to 3.874 eV with the applied potentials. From in situ UV-vis spectra, the optical constants such as refractive index and dielectric constant of the SPAN thin film were determined. The important changes in absorption edge, refractive index and the dielectric constant were observed due to the applied potentials. The refractive index dispersion curves of the film obey the single-oscillator model and oscillator parameters changed with the applied potentials. The most significant result of the present work is in situ spectroelectrochemical method, which can be used to modify the optical band gaps and constants.  相似文献   
273.
Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin-labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of nanoseconds) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, two-step procedure, based on the probabilistic framework of hidden Markov models, is developed to build a discrete-time Markov chain process that faithfully captures the internal spin label dynamics on time scales longer than about 150 ps. The constructed Markov model is used both to gain insight into the long-lived conformations of the spin label and to generate the stochastic trajectories required for the simulation of ESR spectra. The methodology is illustrated with an application to the case of a spin-labeled poly alanine alpha helix in explicit solvent.  相似文献   
274.
Two novel distyryl-boradiazaindacene dyes with dimethylaminostyryl and pyridylethenyl substituents display opposite spectral shifts on protonation with TFA in organic solvents. This bidirectional switching of the dyes can be shown to be directly related to ICT donor and acceptor characteristics of the substituents attached to the BODIPY core. The observed spectral response of these dyes could be very useful in the design of novel NIR fluorescent ratiometric probes for pH.  相似文献   
275.
We synthesized five BODIPY-oxazine dyads in one to four synthetic steps from known precursors. They differ in the nature of the unsaturated spacer linking the oxazine photochrome to either the conjugated framework or the boron center of the BODIPY fluorophore. Despite the π-character of the linkers, the two functional components are electronically isolated in the ground state and the BODIPY fluorophore maintains its absorption and, with one exception, emission properties unaltered. Instead, the photochemical response of the photochromic component is completely suppressed within all dyads. Rather than the expected opening of the oxazine ring, the laser excitation of these molecular assemblies results in the effective population of the BODIPY triplet in four of the five dyads. Control experiments with appropriate model compounds indicate that the local excitation of the oxazine component results first in intersystem crossing and then energy transfer to the BODIPY component. In fact, the transfer of energy from the triplet state of the former to the triplet state of the latter competes successfully with the opening of the oxazine ring and prevents the isomerization of the photochromic component. These observations demonstrate, for the very first time, that the photoinduced opening of these photochromic oxazines occurs along the potential energy surface of their triplet state. Such valuable mechanistic insights into their excitation dynamics can guide the design of novel members of this family of photochromic compounds with improved photochemical properties.  相似文献   
276.
A viable strategy to encapsulate a fluorophore/photochrome dyad and a nitric oxide photodonor within supramolecular assemblies of a cyclodextrin‐based polymer in water was developed. The two photoresponsive guests do not interact with each other within their supramolecular container and can be operated in parallel under optical control. Specifically, the dyad permits the reversible switching of fluorescence on a microsecond timescale for hundreds of cycles, and the photodonor enables the irreversible release of nitric oxide. Furthermore, these supramolecular assemblies cross the membrane of human melanoma cancer cells and transport their cargo in the cytosol. The fluorescence of one component allows the visualization of the labeled cells, and its switchable character could, in principle, be used to acquire super‐resolution images, while the release of nitric oxide from the other induces significant cell mortality. Thus, our design logic for the construction of biocompatible nanoparticles with dual functionality might evolve into the realization of valuable photoresponsive probes for imaging and therapeutic applications.  相似文献   
277.
Magnetic iron oxide nanoparticles have numerous applications in the biomedical field, some more mature, such as contrast agents in magnetic resonance imaging (MRI), and some emerging, such as heating agents in hyperthermia for cancer therapy. In all of these applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration, and add functionality. However, the coatings may interact with the surface atoms of the magnetic core and form a magnetically disordered layer, reducing the total amount of the magnetic phase, which is the key parameter in many applications. In the current study, amine and carboxyl functionalized and bare iron oxide nanoparticles, all suspended in water, were purchased and characterized. The presence of the coatings in commercial samples was verified with X-ray photoelectron spectroscopy (XPS). The class of iron oxide (magnetite) was verified via Raman spectroscopy and X-ray diffraction. In addition to these, in-house prepared iron oxide nanoparticles coated with oleic acid and suspended in heptane and hexane were also investigated. The saturation magnetization obtained from vibrating sample magnetometry (VSM) measurements was used to determine the effective concentration of magnetic phase in all samples. The Tiron chelation test was then utilized to check the real concentration of the iron oxide in the suspension. The difference between the concentration results from VSM and the Tiron test confirmed the reduction of magnetic phase of magnetic core in the presence of coatings and different suspension media. For the biocompatible coatings, the largest reduction was experienced by amine particles, where the ratio of the effective weight of magnetic phase reported to the real weight was 0.5. Carboxyl-coated samples experienced smaller reduction with a ratio of 0.64. Uncoated sample also exhibits a reduction with a ratio of 0.6. Oleic acid covered samples show a solvent-depended reduction with a ratio of 0.5 in heptane and 0.4 in hexane. The corresponding effective thickness of the nonmagnetic layer between magnetic core and surface coating was calculated by fitting experimentally measured magnetization to the modified Langevin equation.  相似文献   
278.
In sensorineural hearing loss, damage to inner hair cells or the auditory nerve may result in dead regions in the cochlea, where the information transmission is disrupted. In cochlear implants, similar dead regions might appear if the spiral ganglia do not function. Shannon et al. [J. Assoc. Res. Otolaryngol. 3, 185-199 (2002)] simulated dead regions of varying size and location using a noiseband vocoder. Phoneme recognition by normal-hearing subjects was measured under two frequency-place mapping conditions: the frequency range corresponding to the dead region was (1) removed or (2) reassigned to bands adjacent to the dead region to simulate the off-frequency stimulation of neurons at the edge of a dead region. The present study extends the results of Shannon et al. by including a frequency transposition mapping condition, where the overall acoustic input frequency range was distributed over the entire remaining nondead region. The frequency transposed map provided more acoustic information when compared to the map with the frequency range corresponding to the dead region removed. However, speech perception did not improve for many simulated dead region conditions, possibly due to the spectral distortions in the frequency-place mapping.  相似文献   
279.
This study investigated the experimental coefficient in the mathematical correlation for the pressure gradient of spherical capsule train flow according to flow regimes. The investigation was carried out in the 1.2 × 104 < Re < 1.5 × 105 range and under transport concentration of 5 – 30 %. Deviation between the pressure drops measured by experiment and the mathematical correlation was calculated based on new experimental coefficients. The total pressure gradient in the two‐phase flow of the mixture was distinguished as pressure gradients caused by homogeneous flow and those caused by pressure drops, depending on the rotational movement of the capsules. The experimental findings indicate that at lower concentrations, the losses caused by the rotational movement are low, but the losses caused by the homogeneous flow are high. Losses caused by the rotational movement increase as the concentration increases.  相似文献   
280.
Mechanical stresses in microelectronics and micro‐electromechanical systems may influence the reliability of applications and devices. The origin of the stresses can be because of the joining of dissimilar materials with regard to the thermal expansion coefficient, electromigration or the deposition process utilized. Stresses can lead to delamination, crack formation and stress migration and therefore to a failure of the device. Identifying the locations of highest stresses in a device is crucial for reliability improvement. Currently, both Laue X‐ray micro diffraction and convergent‐beam electron diffraction are able to locally determine the stresses in thin metal films. Here, we propose a modified method of indirect Raman microspectroscopy to measure stresses with a lateral resolution in the submicrometer range at a laboratory scale. The method encompasses the crystallization of an amorphous silicon layer by local laser annealing and its subsequent usage as a strain gage. Stresses in an aluminum thin film were determined as a function of temperature. In addition to the average stress, the stress distribution could be monitored. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号