首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
化学   52篇
数学   2篇
物理学   22篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
61.
Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of investigating further this new material as a potential UV solid state laser.  相似文献   
62.
63.
Order-N and embedded-cluster first-principles DFT calculations have been performed with the Mosaico method for energy optimization (Seijo and Barandiarán in J Chem Phys 121:6698, 2004) for the first time. The Hamiltonian matrix elements have been computed with the SIESTA code. The order-N behavior of the method in DFT calculations was shown in total energy calculations performed on bulk silicon using supercells up to Si8000. The sizes of the orbital-specific-basis-sets needed for precise calculations have been explored in demanding (bulk silicon) and favorable (water clusters) cases for a method based on the calculation of localized molecular orbitals. Embedded-cluster calculations, which are much faster than full-system calculations, have been performed on an Si-vacancy of bulk silicon and on a water cluster with a displacing water molecule. The feasiability of calculations of this type with Mosaico has been demonstrated. The sizes of the variationally free, active clusters which are needed for an agreement with full-system calculations have been explored and result to be reasonably small. Contribution to the Serafin Fraga Memorial Issue.  相似文献   
64.
III-V semiconductor compound structures are widely applied in technology of advanced microelectronics, optoelectronics, and gas sensors. In this paper, we report on the use of XPS to characterize in situ the interaction of thermally activated hydrogen atoms and hydrogen molecules with InP(1 0 0) surfaces covered by thin InN overlayers. XPS spectra were taken with an ESCALAB-210 spectrometer after repeated hydrogenation cycles at temperatures up to 350 °C. The evolution of the In 3d, In 4d, P 2p, N 1s, O 1s and C 1s photoelectron spectra was carefully monitored. The XPS spectra of the hydrogen exposed surface revealed significant differences compared to those from the non-hydrogenated surface. InN films were found to be weakly reactive to hydrogen under experimental conditions explored. The behavior of P atoms at the hydrogenated surface was dependent on the parameters characterizing each hydrogenation (exposure, hydrogen species used, annealing temperature). Moreover, the heavily hydrogenated surface exhibited a phosphorus enrichment.  相似文献   
65.
We present both experimental and theoretical studies of the sticking of water molecules on ice. The sticking probability is unity over a wide range in energy (0.5 eV-1.5 eV) when the molecules are incident along the surface normal, but drops as the angle increases at high incident energy. This is explained in terms of the strong orientational dependence of the interaction of the molecule with the surface and the time required for the reorientation of the molecule. The sticking probability is found to scale with the component of the incident velocity in the plane of the surface, unlike the commonly assumed normal or total energy scaling.  相似文献   
66.
It is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach is used to calculate the interaction potentials between the discrete charged sites. Homogeneous, heterogeneous, and patch site distributions are considered to reproduce the various titrating site distributions at the solid/solution interface of spherical NPs. By considering Coulomb, salt, and image charges effects, results show that for different ionic concentrations, modifications of the dielectric constant of NPs having homogeneous and heterogeneous site distributions have little effect on their charging process. Thus, the reaction field, due to the presence of image charges, fully counterbalances the Coulomb interactions. This is not the case for patch distributions, where Coulomb interactions are not completely counterbalanced by the reaction field. Application of the present model to pyrogenic silica is also performed and comparison is made with published experimental data of titration curves at various ionic concentrations.  相似文献   
67.
We present a linear scaling method for the energy minimization step of semiempirical and first-principles Hartree-Fock and Kohn-Sham calculations. It is based on the self-consistent calculation of the optimum localized orbitals of any localization method of choice and on the use of orbital-specific basis sets. The full set of localized orbitals of a large molecule is seen as an orbital mosaic where each tessera is made of only a few of them. The orbital tesserae are computed out of a set of embedded cluster pseudoeigenvalue coupled equations which are solved in a building-block self-consistent fashion. In each iteration, the embedded cluster equations are solved independently of each other and, as a result, the method is parallel at a high level of the calculation. In addition to full system calculations, the method enables to perform simpler, much less demanding embedded cluster calculations, where only a fraction of the localized molecular orbitals are variational while the rest is frozen, taking advantage of the transferability of the localized orbitals of a given localization method between similar molecules. Monitoring single point energy calculations of large poly(ethylene oxide) molecules and three dimensional carbon monoxide clusters using an extended Huckel Hamiltonian are presented.  相似文献   
68.
A series of ten glycosyltransferase inhibitors has been designed and synthesized by using pyridine as a pyrophosphate surrogate. The series was prepared by conjugation of carbohydrate, pyridine, and nucleoside building blocks by using a combination of glycosylation, the Staudinger–Vilarrasa amide‐bond formation, and azide–alkyne click chemistry. The compounds were evaluated as inhibitors of five metal‐dependent galactosyltransferases. Crystallographic analyses of three inhibitors complexed in the active site of one of the enzymes confirmed that the pyridine moiety chelates the Mn2+ ion causing a slight displacement (2 Å) from its original position. The carbohydrate head group occupies a different position than in the natural uridine diphosphate (UDP)–Gal substrate with little interaction with the enzyme.  相似文献   
69.
Excitons trapped at impurity centers in highly ionic crystals were first described by McClure and Pedrini [Phys. Rev. B 32, 8465 (1985)] as excited states consisting of a bound electron-hole pair with the hole localized on the impurity and the electron on nearby lattice sites, and a very short impurity-ligand bond length. In this work the authors present a detailed microscopic characterization of impurity-trapped excitons in U(4+)-doped Cs(2)GeF(6). Their electronic structure has been studied by means of relativistic ab initio model potential embedded cluster calculations on (UF(6))(2-) and (UF(6)Cs(8))(6+) clusters embedded in Cs(2)GeF(6), in combination with correlation methods based on multireference wave functions. The local geometry of the impurity-trapped excitons, their potential energy curves, and their multielectronic wave functions have been obtained as direct, nonempirical results of the methods. The calculated excited states appear to be significantly delocalized outside the UF(6) volume and their U-F bond length turns out to be very short, closer to that of a pentavalent uranium defect than to that of a tetravalent uranium defect. The wave functions of these excited states show a dominant U 5f(1)7s(1) configuration character. This result has never been anticipated by simpler models and reveals the unprecedented ability of diffuse orbitals of f-element impurities to act as electron traps in ionic crystals.  相似文献   
70.
Wave-function-based ab initio calculations on the lowest states of the 4f(n),4f(n-1)5d(t2g)1, and 4f(n-1)5d(e(g))1 configurations of (LnCl6)3- clusters (Ln=Ce to Tb) embedded in the cubic elpasolite Cs2NaYCl6 have been performed, in an attempt to contribute to a comprehensive understanding of the 4f-->5d excitations of lanthanide ions in crystals. Reliable data are provided on the changes of bond lengths and breathing mode vibrational frequencies upon 4f-->5d(t2g) and 4f-->5d(e(g)) excitations, as well as on minimum-to-minimum and vertical absorption and emission transitions, and on the Stokes shifts. The available experimental data are discussed and predictions are made. The stabilization of the 4f-->5d(baricenter) excitation of the doped ions with respect to the 4f-->5d excitations of the free ions, which is a key variable for the understanding of these excitations in solid hosts, is analyzed and found to be due, in two-thirds, to dynamic ligand correlation effects and, in one-third, to orbital relaxation, charge transfer, and covalency effects present in a mean-field approximation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号