首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   5篇
化学   99篇
晶体学   3篇
力学   1篇
数学   2篇
物理学   31篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   11篇
  2012年   5篇
  2011年   4篇
  2010年   9篇
  2009年   1篇
  2008年   13篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
11.
Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO2 solar cells (DSC) with high efficiencies of light to electricity conversion of 11.1% and 10.2%. The different parameters, that is, chemical capacitance, steady-state transport resistance, transient diffusion coefficient, and charge-transfer (recombination) resistance, have been interpreted in a unified and consistent framework, in which an exponential distribution of the localized states in the TiO2 band gap plays a central role. The temperature variation of the chemical diffusion coefficient dependence on the Fermi-level position has been observed consistently with the standard multiple trapping model of electron transport in disordered semiconductors. A Tafel dependence of the recombination resistance dependence on bias potential has been rationalized in terms of the charge transfer from a distribution of surface states using the Marcus model of electron transfer. The current-potential curve of the solar cells has been independently constructed from the impedance parameters, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.  相似文献   
12.
Interface models and processing technologies are reviewed for successful establishment of surface passivation, interface control and MIS gate stack formation in III-V nanoelectronics. First, basic considerations on successful surface passivation and interface control are given, including review of interface models for the band alignment at interfaces, and effects of interface states in nanoscale devices. Then, a brief review is given on currently available surface passivation technologies for III-V materials, including the Si interface control layer (ICL)-based passivation scheme by the authors’ group. The Si-ICL technique has been successfully applied to surface passivation of nanowires and to formation of a HfO2 high-k dielectric/GaAs interfaces with low values of the interface state density.  相似文献   
13.
We investigated dynamic interactions between oppositely charged small unilamellar vesicles using positively charged vesicles containing 1,2-dioleoyl-3-trimethylammonium-propane or 3beta-[N-(N('),N(')-dimethylaminoethane)-carbamoyl] cholesterol and negatively charged vesicles containing L-alpha-phosphatidyl-DL-glycerol. Aggregation, lipid bilayer mixing, contents mixing and contents leakage were systematically examined using optical density measurements, fluorescence resonance energy transfer assays, fluorescence quenching assays, light-scattering analyses, and freeze-fracture transmission electron microscopy. The oppositely charged vesicles aggregated immediately. Lipid mixing was observed, but there was no mixing of the contents. The vesicle aggregates disaggregated spontaneously after several minutes. The surface potential of the disaggregated vesicles was neutralized. From these results, we infer that the lipids in the external monolayers were exchanged between the oppositely charged vesicles while the internal monolayers remained intact. The two types of cationic lipids used exhibited different speeds of disaggregation.  相似文献   
14.
A novel technique called the "lipid-coated ice droplet hydration method" is presented for the preparation of giant vesicles with a controlled size between 4 and 20 microm and entrapment yields for water-soluble molecules of up to about 30%. The method consists of three main steps. In the first step, a monodisperse water-in-oil emulsion with a predetermined average droplet diameter between 4 and 20 microm is prepared by microchannel emulsification, using sorbitan monooleate (Span 80) and stearylamine as emulsifiers and hexane as oil. In the second step, the water droplets of the emulsion are frozen and separated from the supernatant hexane solution by precipitation, followed by a removal of the supernatant and followed by the replacement of Span 80 by using a hexane solution containing egg yolk phosphatidylcholine, cholesterol, and stearylamine (5:5:1, molar ratio). This procedure is performed at -10 degrees C to keep the water droplets of the emulsion in a frozen state and thereby to avoid extensive water droplet coalescence. In the third step, hexane is evaporated at -4 to -7 degrees C and an external water phase is added to the remaining mixture of lipids and water droplets to form giant vesicles that have an average size in the range of that of the initial emulsion droplets (4-20 microm). The entrapment yield and the lamellarity of the vesicles obtained depend on the lipid/water droplet ratio and on the composition of the external water phase. At high lipid/water droplet ratio, the giant vesicles have a thicker membrane (indicating multilamellarity) and a higher entrapment yield than in the case of a low lipid/water droplet ratio. The highest entrapment yield ( approximately 35%) is obtained if the added external water phase contains preformed unilamellar egg phosphatidylcholine vesicles with an average diameter of 50 nm. The addition of these small vesicles minimizes the water droplet coalescence during the third step of the vesicle preparation, thereby decreasing the extent of release of water-soluble molecules originally present in the water droplets. The GVs prepared can be extruded through polycarbonate membranes to yield large unilamellar vesicles with about 100 nm diameter. This size reduction, however, leads to a decrease in the entrapment yield to about 12% due to solute leakage from the vesicles during the extrusion process.  相似文献   
15.
Previous retrosynthetic and isotope‐labeling studies have indicated that biosynthesis of the iron guanylylpyridinol (FeGP) cofactor of [Fe]‐hydrogenase requires a methyltransferase. This hypothetical enzyme covalently attaches the methyl group at the 3‐position of the pyridinol ring. We describe the identification of HcgC, a gene product of the hcgA‐G cluster responsible for FeGP cofactor biosynthesis. It acts as an S‐adenosylmethionine (SAM)‐dependent methyltransferase, based on the crystal structures of HcgC and the HcgC/SAM and HcgC/S‐adenosylhomocysteine (SAH) complexes. The pyridinol substrate, 6‐carboxymethyl‐5‐methyl‐4‐hydroxy‐2‐pyridinol, was predicted based on properties of the conserved binding pocket and substrate docking simulations. For verification, the assumed substrate was synthesized and used in a kinetic assay. Mass spectrometry and NMR analysis revealed 6‐carboxymethyl‐3,5‐dimethyl‐4‐hydroxy‐2‐pyridinol as the reaction product, which confirmed the function of HcgC.  相似文献   
16.
We studied the immobilization of a mycelium (Aspergillus niger) using the working hypothesis as follows: (a) when polycation was added to the cell suspension, a few parts of it would bind on the surface of a hypha, allowing to gather the hyphae in part but not all; (b) upon further addition of polyanion, such a gathering of the hyphae is tightly bunched by the polyelectrolyte complex (PEC) which is resulted from the remaining polycation; (c) as a result, a mycelium with partially bunched hyphae can be obtained. Potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide [6-O-(2-hydroxyethyl-2-(trimethylamonio)-chitosan iodide) were used as the polyanion and the polycation, respectively. The optical and electron microscopic analyses showed that our immobilized cell contains many of PEC-bunched hyphae. The sedimentation rate increased with the weight ratio of PEC to dry cells and leveled off at the weight ratio larger than 0.5. The gluconic acid production from glucose was studied by a semi-large scale (1 l) cultivation of the imobilized and free cells using a jar fermentor. It was found that an apparent specific activity of the immobilized cells for glucose oxidation becomes 1.44 times that of the free cells even at a high cell density of 40 g/l.  相似文献   
17.
A doubly protonated hydrochloride salt of a saddle-distorted dodecaphenylporphyrin (H2DPP), [H4DPPP]Cl2, forms a porphyrin nanochannel (PNC). X-ray crystallography was used to determine the structure of the molecule, which revealed the inclusion of guest molecules within the PNC. Electron-donating molecules, such as p-hydroquinone and p-xylene, were selectively included within the PNC in sharp contrast to electron acceptors, such as the corresponding quinones, which were not encapsulated. This result indicates that the PNC can recognize the electronic character and steric hindrance of the guest molecules during the course of inclusion. ESR measurements (photoirradiation at lambda>340 nm at room temperature) of the PNC that contains p-hydroquinone, catechol, and tetrafluorohydroquinone guest molecules gave well-resolved signals, which were assigned to cation radicals formed without deprotonation based on results from computer simulations of the ESR spectra and density functional theory (DFT) calculations. The radicals are derived from photoinduced electron transfer from the guest molecules to the singlet state of H4DPP2+. Transient absorption spectroscopy by femtosecond laser flash photolysis allowed us to observe the formation of 1(H4DPP2+)*, which is converted to H4DPP+. by electron transfer from the guest molecules to 1(H4DPP2+)*, followed by fast disproportionation of H4DPP+., and charge recombination to give diamagnetic species and the triplet excited state 3(H4DPP2+)*, respectively.  相似文献   
18.
19.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).  相似文献   
20.
Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10−2 Pa. The absorption signal of the asymmetric stretching mode of the PO43− unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43− (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43− sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号