首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   18篇
化学   182篇
晶体学   3篇
力学   3篇
数学   71篇
物理学   60篇
  2024年   2篇
  2023年   4篇
  2022年   13篇
  2021年   12篇
  2020年   6篇
  2019年   13篇
  2018年   7篇
  2017年   20篇
  2016年   19篇
  2015年   13篇
  2014年   12篇
  2013年   28篇
  2012年   20篇
  2011年   17篇
  2010年   14篇
  2009年   13篇
  2008年   13篇
  2007年   14篇
  2006年   20篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
61.
Montmorillonite KSF clay supported CuO nanoparticles efficiently catalyzes one-pot aromatic azidonation of aryl boronic acids followed by regioselective azide–alkyne 1,3-dipolar cycloaddition (CuAAC) reaction producing corresponding 1-aryl-1,2,3-triazole derivatives at room temperature in excellent yields without use of any additives. Investigations on mechanism of CuAAC revealed that sodium azide, which is used as azidonating reagent in one-pot protocol reduces Cu(II) to click-active Cu(I). The catalytic efficiency of another Cu(II) source CuSO4 in combination with NaN3 for this one-pot CuAAC protocol, further supported our mechanism. This is the first report for use of Cu(II)/NaN3 catalytic system for CuAAC protocol. The clay–Cu(II) catalyst being ligand-free, leaching-free, easy to synthesize from inexpensive commercially available precursors, recyclable, and environmentally friendly will be highly useful for economical synthesis of 1,4-disubstituted 1,2,3-triazoles.  相似文献   
62.
The unusual selectivity of a methylene succinic (itaconic) acid modified polymeric column was investigated for the separation of alkali, alkaline earth, transition and heavy metals employing non-chelating inorganic eluents. The retention of selected metal ions on the column was investigated with simple HNO3 eluents and eluents prepared from KNO3 and KCl salts of varying pH (adjusted using HNO3). From these studies both the effect of eluent ionic strength and pH upon retention was evaluated for the itaconic acid stationary phase. The results obtained showed that despite slow exchange kinetics causing poor efficiencies, acceptable baseline separations of selected alkaline earth and transitions could be obtained under optimum conditions (the baseline separation of Mg(II), Ca(II), Mn(II), Cd(II), Zn(II) and Co(II) was possible using a 15 mM KNO3-5 mM KCl eluent at pH 3.50 in under 25 min). The use of an simple ionic strength step gradient was shown that facilitated the addition of Pb(II) to the above group of metal ions. An investigation into the effect of temperature upon peak efficiency and retention showed increased column temperature could be used to improve the resolution of closely eluting metal ions such as Ca(II) and Sr(II) and Ca(II) and Mn(II).  相似文献   
63.
Silver nanoparticles (Ag-NPs) were synthesized using a facile green chemistry synthetic route. The reaction occurred at ambient temperature with four reducing agents introduced to obtain nanoscale Ag-NPs. The variables of the green synthetic route, such as acidity, concentration of starting materials, and molar ratio of reactants were optimized. Dispersing agents were employed to prevent Ag-NPs from aggregating. Advanced instrumentation techniques, such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible spectroscopy (UV–vis), and phase analysis light scattering technique (ZetaPALS) were applied to characterize the morphology, particle size distribution, elemental composition, and electrokinetic behavior of the Ag-NPs. UV–vis spectra detected the characteristic plasmon at approximately 395–410 nm; and XRD results were indicative of face-centered cubic phase structure of Ag. These particles were found to be monodispersed and highly crystalline, displaying near-spherical appearance, with average particle size of 10.2 nm using citrate or 13.7 nm using ascorbic acid as reductants from particle size analysis by ZetaPALS, respectively. The rapid electrokinetic behavior of the Ag was evaluated using zetapotential (from −40 to −42 mV), which was highly dependant on nanoparticle acidity and particle size. The current research opens a new avenue for the green fabrication of nanomaterials (including variables optimization and aggregation prevention), and functionalization in the field of nanocatalysis, disinfection, and electronics.  相似文献   
64.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   
65.
The chromatographic behaviour of alkaline earth metals on iminodiacetic acid bonded silica was studied. It was found that the ionic strength of the eluent greatly affected both retention time and selectivity by controlling the extent to which either simple ion exchange or surface complexation was responsible for retention. With a 0.1 M KNO3 eluent, the retention order was Mg(II), Sr(II), Ca(II) and Ba(II), indicating a strong contribution to retention from ion exchange. However, when using a 1.5 M KNO3 eluent, Ba(II) was found to elute first, indicating complexation to be more dominant under these conditions (pH 4.2). The effect of the ionic strength of the sample was also studied and it was found that by matching the eluent cation with that of the sample matrix, efficient separations of alkaline earth metals in 1.0 M NaCl and KCl brines could be obtained without matrix system peaks. Using post-column reaction with o-cresolphthalein complexone, trace levels of Ca(II) and Mg(II) were determined in medicinal NaCl saline solution and laboratory-grade KCl.  相似文献   
66.
A new class of unsaturated polyesters based on diethylketone have been prepared by interfacial polymerization of 2,4-bis(4-hydroxybenzylidene)-3-pentanone(I) and 2,4-bis(4-hydroxy-3-methoxybenzylidene)-3-pentanone(II) with 4,4’-azodibenzoyl chloride and 3,3’-azodibenzoyl chloride at ambient temperature. The model compounds were synthesized by reaction of(I) and(II) with benzoyl chloride. The new monomers, model compounds and polyesters have been characterized by different spectral analyses. The polyesters have inherent viscosity of 0.55-0.80 d L/g and moderate number average molecular weight(Mn) in the range of 6150-7400 g/mol. Most of the compounds exhibited their solubility in aprotic solvents while partial solubility in various halogenated organic solvents was observed. The temperatures of 10% weight loss were high(225-330 °C) in nitrogen, indicating that these polyesters have excellent thermal stability. Doping with iodine dramatically raised the conductivity and produced brown colored semiconductive polymers with a maximum conductivity of 2.7 × 10-6 --1cm-1. Moreover, the morphological properties of selected example of polyesters were detected by SEM.  相似文献   
67.
The optical characteristics of biological tissues sampled from the anterior abdominal wall of laboratory rats are for the first time experimentally studied in a wide wavelength range (350-2500 nm). The experiments have been performed in vitro using a LAMBDA 950 (PerkinElmer, United States) spectrophotometer. Inverse Monte Carlo simulation is used to restore the spectral dependences for scattering and absorption coefficients, as well as the scattering anisotropy factor for biological tissue based on the recorded spectra of diffuse reflection and total and collimated transmissions.  相似文献   
68.
69.
Bashir S  Mutter R  Derrick PJ 《The Analyst》2003,128(12):1452-1457
Dihydroxybenzoic acid was modified to three analogues (M2, M4 and M6). The analogues exhibited specific properties that resulted in enhancement of analyte signal intensity with or without addition of iodine compared to the underivatized parent. Addition of iodine to M2, an ester of dihydroxybenzoic acid that had a terminal double bond in the alkyl chain, resulted in peak intensities comparable to the parent, indicating that iodine interaction across the double bond resulted in enhancement although the exact mechanism is not fully understood. No enhancement on addition of iodine was observed for M4, which had a long alkyl chain that contained no double bonds. The alkyl chain allowed micelle formation in solution, which in turn allowed more uniform analyte-to-matrix mixing. The final analogue combined the long alkyl chain of M4 with the double bond of M2 and exhibited either similar peak intensities to that of dihydroxybenzoic acid or better. Micelle formation in solution was examined using spectroscopy and in the solid by reflective microscopy. The standard deviation from spot to spot was considerably lower relative to dihydroxybenzoic acid (RSD 3.4%vs. 14.2%). Unlike dihydroxybenzoic acid, the novel matrix M6 was able to yield characteristic peaks for analytes such as ubiquitin.  相似文献   
70.
Cellulose acetate was characterized by using enzyme in both digestion and chemical derivation and acetolysis. The fragments were normalised and compared on an anhydroglucose scale, using mass spectrometry to identify the different sized fragments. It was determined that at least two sub-populations for cellulose acetate existed within the parent. The macroscopic effect of this variation in the degree of acetylation will be a modification of the structural properties of the polymer chains. It was found that through comparison with enzyme-based degradation, an estimation of the acetylation topography of the cellulose acetate fraction could be made. Enzyme degradation produced a number of oligosaccharides of more than 10 glucose units, presumably resistant to enzyme degradation because they contained acetate groups. Chemical hydrolysis gave a random ladder of short sequences of mainly 3–4 glucose units some of which had a high methyl ether content, that were analysed by mass and converted to an anhydroglucose mass scale. This approach could be used to demonstrate differences between large biopolymers of cellulose acetate that previously gave an overall average rather than a specific ladder average.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号