首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2941篇
  免费   220篇
  国内免费   14篇
化学   2164篇
晶体学   11篇
力学   60篇
数学   414篇
物理学   526篇
  2024年   2篇
  2023年   52篇
  2022年   76篇
  2021年   118篇
  2020年   166篇
  2019年   187篇
  2018年   83篇
  2017年   69篇
  2016年   198篇
  2015年   149篇
  2014年   161篇
  2013年   193篇
  2012年   274篇
  2011年   271篇
  2010年   154篇
  2009年   127篇
  2008年   194篇
  2007年   156篇
  2006年   149篇
  2005年   99篇
  2004年   59篇
  2003年   30篇
  2002年   29篇
  2001年   25篇
  2000年   17篇
  1999年   14篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1984年   2篇
  1983年   3篇
  1981年   9篇
  1980年   2篇
  1979年   3篇
  1978年   7篇
  1974年   2篇
  1973年   3篇
  1957年   1篇
  1936年   1篇
  1932年   2篇
  1928年   1篇
排序方式: 共有3175条查询结果,搜索用时 11 毫秒
141.
A new synthesis of tetraazaperopyrenes (TAPPs) starting from a halogenated perylene derivative 3,4,9,10- tetrabromo-1,6,7,12-tetrachloroperylene ( 1 ) gave access to bay-substituted TAPPs for the first time. Selective lithiation of the bromine-positions and subsequent addition of tosyl azide led to the formation of the tetraazidotetrachloroperylene ( 2 ), which was subsequently reduced by addition of sodium borohydride to the corresponding tetraaminotetrachloroperylene ( 3 ). Oxidation to its semiquinoidal form 4 and subsequent cyclization with acid chlorides gave rise to a series of bay-chlorinated TAPPs. Whereas the aromatic core of the previously studied ortho-substituted TAPPs was found to be planar, the steric pressure of the two chlorine substituents on each side leads to the twist of the peropyrene core of approximately 30 degrees, a structural feature also observed in other bay-substituted perylene derivatives. An experimental and computational analysis reveals that introducing chloride substituents at these positions leads to slightly increased electron affinities (EA) enabling the selective generation and characterization of the reduced mono-anionic radicals and closed shell di-anionic species. These anions were isolated and characterized by UV/Vis spectroscopy and EPR or NMR, respectively. Processing of the bay-chlorinated TAPPs in n-channel organic TFTs revealed electron mobilities of 0.001 to 0.003 cm2 V−1 s−1. These reduced electron mobilities compared to the ortho-halogenated TAPPs are thought to be rooted in the less densely packed solid-state structures.  相似文献   
142.
A SrLiAl3N4:Eu2+ (SLA) red phosphor prepared through a high‐pressure solid‐state reaction was coated with an organosilica layer with a thickness of 400–600 nm to improve its water resistance. The observed 4f65d→4f7 transition bands are thought to result from the existence of Eu2+ at two different Sr2+ sites. Luminescence spectra at 10 K revealed two zero‐phonon lines at 15377 (for Eu(Sr1)) and 15780 cm?1 (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu2+/3+ result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White‐light‐emitting diodes of the SLA red phosphor and a commercial Y3Al5O12:Ce3+ yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K.  相似文献   
143.
Crystals of the first sodalite‐type zeolite containing an all‐iron framework, a ferrolite, Ba8(Fe12O24)Nay(OH)6?x H2O, were synthesized using the hydroflux method in nearly quantitative yield. Ba8(Fe12O24)Nay(OH)6?x H2O crystallizes in the cubic space group with a=10.0476(1) Å. Slightly distorted FeO4 tetrahedra are linked to form Fe4O4 and Fe6O6 rings, which in turn yield channels and internal cavities that are characteristic of the sodalite structure. Barium, sodium, and hydroxide ions and water molecules are found in the channels and provide charge balance. Magnetic measurements indicate that the ferrolite exhibits magnetic order up to at least 700 K, with the field‐cooled and zero‐field‐cooled curves diverging. Analysis of the 57Fe Mössbauer spectra revealed two spectral components that have equal spectral areas, indicating the presence of two subsets of iron centers in the structure. Dehydrated versions of the ferrolite were also prepared by heating the sample.  相似文献   
144.
145.
Despite the strong technological importance of lanthanide complexes, their formation processes are rarely investigated. This work is dedicated to determining the influence of synthesis parameters on the formation of [Ce(bipy)2(NO3)3] as well as Ce3+‐ and Tb3+‐substituted [La(bipy)2(NO3)3] (bipy = 2,2′‐bipyridine) complexes. To this end, we performed in situ luminescence measurements, synchrotron‐based X‐ray diffraction (XRD) analysis, infrared spectroscopy (IR), and measured pH value and/or ion conductivity during their synthesis process under real reaction conditions. For the [Ce(bipy)2(NO3)3] complex, the in situ luminescence measurements initially presented a broad emission band at 490 nm, assigned to the 5d→4f Ce3+ ions within the ethanolic solvation shell. Upon the addition of bipy, a red shift to 700 nm was observed. This shift was attributed to the changes in the environment of the Ce3+ ions, indicating their desolvation and incorporation into the [Ce(bipy)2(NO3)3] complex. The induction time was reduced from 8 to 3.5 min, by increasing the reactant concentration by threefold. In contrast, [La(bipy)2(NO3)3] crystallized within days instead of minutes, unless influenced by high Ce3+ and Tb3+ concentrations. Monitoring and controlling the influence of the reaction parameters on the structure of emissive complexes is important for the development of rational synthesis approaches and optimization of their structure‐related properties like luminescence.  相似文献   
146.
Time‐domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161Dy has been used to investigate the magnetic properties of a DyIII‐based single‐molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3PO)2(H2O)5]Br3?2 (Cy3PO)?2 H2O?2 EtOH is with B0=582.3(5) T significantly larger than that of the free‐ion DyIII with a 6H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy‐containing compounds.  相似文献   
147.
Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo‐1,2‐dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.  相似文献   
148.
149.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   
150.
Fluorescent nanomaterials such as single‐walled carbon nanotubes (SWCNTs) have many advantages in terms of their photophysics, but it is difficult to target them to specific locations in living systems. In contrast, the green fluorescent protein (GFP) has been genetically fused to proteins in many cells and organisms. Therefore, GFP can be seen not only as a fluorophore but as a universal target/handle. Here, we report the conjugation of GFP‐binding nanobodies to DNA‐wrapped SWCNTs. This approach combines the targeting capabilities of GFP‐binding nanobodies and the nonbleaching near‐infrared fluorescence (850–1700 nm) of SWCNTs. These conjugates allow us to track single Kinesin‐5‐GFP motor proteins in developing embryos of Drosophila melanogaster. Additionally, they are sensitive to the neurotransmitter dopamine and can be used for targeted sensing of dopamine in the nm regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号