首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2936篇
  免费   262篇
  国内免费   14篇
化学   2198篇
晶体学   11篇
力学   60篇
数学   413篇
物理学   530篇
  2023年   53篇
  2022年   65篇
  2021年   118篇
  2020年   166篇
  2019年   186篇
  2018年   84篇
  2017年   69篇
  2016年   201篇
  2015年   149篇
  2014年   165篇
  2013年   196篇
  2012年   277篇
  2011年   271篇
  2010年   156篇
  2009年   128篇
  2008年   194篇
  2007年   160篇
  2006年   148篇
  2005年   98篇
  2004年   60篇
  2003年   32篇
  2002年   30篇
  2001年   28篇
  2000年   17篇
  1999年   14篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   4篇
  1992年   12篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1983年   4篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   8篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1941年   2篇
  1932年   2篇
排序方式: 共有3212条查询结果,搜索用时 31 毫秒
91.
Many environmental mutagens, including polyaromatic compounds are present in surface waters, often in complex mixtures and at low concentrations. The present study provides and applies a novel, integrated approach to isolate polyaromatic mutagens in river water using a sample from the River Elbe. The sample was taken downstream of industrial discharges using blue rayon (BR) as a passive sampler that selectively adsorbs polyaromatic compounds and was subjected to effect-directed fractionation in order to characterise the compounds causing the detected effect(s). The procedure relies on three complementary fractionation steps, the Ames fluctuation assay with strains TA98, YG1024 and YG1041 with and without S9 activation and analytical screening. Several mutagenic fractions were isolated by combining mutagenicity testing with fractionation. The enhanced mutagenicity in the nitroreductase and/or O-acetyltransferase overexpressing strains YG1024 and YG1041 strains suggested amino- and/or nitro-compounds causing mutagenicity in several fractions. Analytical screening of mutagenic fractions with LC-HRMS/MS provided a list of molecular formulas typically containing one to ten nitrogen and at least two oxygen atoms supporting the presence of amino and nitro-compounds in the mutagenic fractions.
Figure
?  相似文献   
92.
Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.
Figure
Schematic representations of the online 3D-nano-HPLC/nano-ESI-Q-TOF-MS/MS setup; LP loading pump, NP nano-pump  相似文献   
93.
A variety of 6‐(trichloromethyl)salicylates (=2‐hydroxy‐6‐(trichloromethyl)benzoates) were prepared by TiCl4‐mediated cyclization of 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1,1,1‐trichloro‐4,4‐dimethoxybut‐3‐en‐2‐one. The employment of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) as Lewis acid resulted in the formation of trichloromethyl‐substituted cyclohexenones. The cyclizations proceeded with good‐to‐very‐good regioselectivities.  相似文献   
94.
LewisX (Lex) antigen based carbohydrate–carbohydrate interactions are mediated by complexation of metal ions. Although theoretical studies about the influence of participating hydroxyl groups in the Lex trisaccharide head group (Galβ(1-4)[Fucα(1-3)]GlcNAc) could gave same rudimental information about the basic mechanism behind this interaction, a little is known about orientation and configuration of the hydroxyl groups required for the specific interaction mediated by Ca2+ complexation. Therefore, there is a need of non-natural derivatives to provide detailed information about the requirements for hydroxyl group arrangement in Lex head group surface plasmon resonance and gold nanoparticle techniques have shown to be powerful tools to investigate carbohydrate–carbohydrate interactions. Benzaldehyde-functionalized glycans can be used for attachment to both gold nanoparticles and surface plasmon resonance sensor surfaces. Therefore, seven benzaldehyde equipped Lex analogs including the natural trisaccharide were synthesized utilizing convergent approach. The derivatives were applied in ongoing carbohydrate–carbohydrate interaction studies by surface plasmon resonance experiments to prove theoretical postulate about the structural requirements of hydroxyl group arrangements in Lex trisaccharides.  相似文献   
95.
We have developed convenient methods for the synthesis of functionalized unsymmetrical dialkyl disulfides under mild conditions in very good yields. The designed method is based on the reaction of (5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinan-2-yl)-disulfanyl derivatives 1 with functionalized alkyl thiolate anions, generated in situ from thioacetates 2 and sodium methoxide or butylamine. The developed method allows the preparation of unsymmetrical disulfides bearing additional hydroxy, carboxy, amino, azido, biotin, or maleimide functionalities.  相似文献   
96.
97.
98.
99.
Branched starch polysaccharides are capable of binding multiple hydrophobic guests, but their exploitation as multivalent hosts and in functional materials is limited by their structural complexity and diversity. Linear α(1–4)‐linked glucose oligosaccharides are known to bind hydrophobic guests inside left‐handed single helices in solution and the solid state. Here, we describe the development of an amphiphilic probe that binds to linear α(1–4)‐linked glucose oligosaccharides and undergoes a conformational switch upon complexation, which gives rise to dramatic changes in the 1H NMR spectrum of the probe. We use this probe to explore hydrophobic binding sites in the branched starch polysaccharides amylopectin and β‐limit dextrin. Diffusion‐ordered (DOSY), nuclear Overhauser effect (NOESY) and chemical shift perturbation (HSQC) NMR experiments are utilised to provide evidence that, in aqueous solution, branched polysaccharides bind hydrophobic guests in well‐defined helical binding sites, similar to those reported for complexation by linear oligosaccharides. By examining the binding affinity of the probe to systematically enzymatically degraded polysaccharides, we deduce that the binding sites for hydrophobic guests can be located on internal as well as external branches and that proximal α(1–6)‐linked branch points weaken but do not prevent complexation.  相似文献   
100.
The reactions of laser‐ablated Au, Ag, and Cu atoms with F2 in excess argon and neon gave new absorptions in the M? F stretching region of their IR spectra, which were assigned to metal‐fluoride species. For gold, a Ng? AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF2 and MF3 (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF5 molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au2F6 molecule.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号