首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3834篇
  免费   302篇
  国内免费   18篇
化学   2862篇
晶体学   13篇
力学   86篇
数学   531篇
物理学   662篇
  2023年   55篇
  2022年   74篇
  2021年   127篇
  2020年   181篇
  2019年   197篇
  2018年   91篇
  2017年   83篇
  2016年   224篇
  2015年   172篇
  2014年   190篇
  2013年   237篇
  2012年   343篇
  2011年   352篇
  2010年   196篇
  2009年   150篇
  2008年   261篇
  2007年   215篇
  2006年   188篇
  2005年   138篇
  2004年   103篇
  2003年   70篇
  2002年   59篇
  2001年   37篇
  2000年   32篇
  1999年   25篇
  1998年   27篇
  1997年   15篇
  1996年   25篇
  1995年   26篇
  1994年   19篇
  1993年   15篇
  1992年   17篇
  1991年   14篇
  1990年   16篇
  1989年   17篇
  1988年   5篇
  1987年   12篇
  1986年   10篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   11篇
  1980年   5篇
  1979年   10篇
  1978年   12篇
  1977年   8篇
  1976年   8篇
  1975年   11篇
  1974年   9篇
  1973年   8篇
排序方式: 共有4154条查询结果,搜索用时 468 毫秒
91.
Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches.  相似文献   
92.

In a wide range of applications it is desirable to optimally control a dynamical system with respect to concurrent, potentially competing goals. This gives rise to a multiobjective optimal control problem where, instead of computing a single optimal solution, the set of optimal compromises, the so-called Pareto set, has to be approximated. When the problem under consideration is described by a partial differential equation (PDE), as is the case for fluid flow, the computational cost rapidly increases and makes its direct treatment infeasible. Reduced order modeling is a very popular method to reduce the computational cost, in particular in a multi query context such as uncertainty quantification, parameter estimation or optimization. In this article, we show how to combine reduced order modeling and multiobjective optimal control techniques in order to efficiently solve multiobjective optimal control problems constrained by PDEs. We consider a global, derivative free optimization method as well as a local, gradient-based approach for which the optimality system is derived in two different ways. The methods are compared with regard to the solution quality as well as the computational effort and they are illustrated using the example of the flow around a cylinder and a backward-facing-step channel flow.

  相似文献   
93.
Polycyclic aromatic azomethine ylides (PAMYs) are powerful building blocks in the bottom-up synthesis of internally nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) through 1,3-cycloaddition reactions. In this work, the cycloaddition reaction of PAMYs to asymmetric ortho-quinones is presented, which, in contrast to the addition to symmetric para-quinones, facilitates subsequent condensation reactions and allows the synthesis of three helical N-PAHs with ullazine-quinoxaline ( UQ - 1 – 3 ) backbones. UQ - 1 and UQ - 2 possess two helical centers; however, single-crystal X-ray analysis together with the computational modeling of UQ - 3 elucidate the formation of only the thermodynamically most stable geometry with four helical centers in a (P,P,M,M) configuration. For the series UQ - 1 – 3 , the number of redox steps is directly correlated with the number of ullazine or quinoxaline units incorporated into the targeted molecular backbones. A detailed investigation of the spectroscopic and magnetic properties of the radical cation and anion as well as the dication and dianion species by in situ EPR/UV/Vis-NIR spectroelectrochemistry is provided. The excellent optical and redox properties combined with helical geometries render them possibly applicable as chiral emitter or ambipolar charge transport material in organic electronics.  相似文献   
94.
The first divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 3 a , SIPr 3 b ; IPr=C{(NAr)CH}2; SIPr=C{(NAr)CH2}2; Ar=2,6-iPr2C6H3) are reported. Compounds 3 a and 3 b were prepared by the reduction of corresponding chlorides {(NHC)C(Ph)}AsCl2 (NHC=IPr 2 a , SIPr 2 b ) with Mg. Calculations revealed a small HOMO–LUMO energy gap of 3.86 ( 3 a ) and 4.24 eV ( 3 b ). Treatment of 3 a with (Me2S)AuCl led to the cleavage of the As=As bond to restore 2 a , which is expected to proceed via the diarsane [{(IPr)C(Ph)}AsCl]2 ( 4 ). Remarkably, 4 as well as 2 a can be selectively accessed on treatment of 3 a with an appropriate amount of C2Cl6. Moreover, 3 a readily reacts with PhEEPh (E=Se or Te) at room temperature to give {(IPr)C(Ph)}As(EPh)2 (E=Se 5 a ; Te 5 b ), revealing the cleavage of As=As and E−E bonds and the formation of As−E bonds. Such highly selective stepwise oxidation ( 3 a → 4 → 2 a ) and bond metathesis ( 3 a → 5 a , b ) reactions are unprecedented in main-group chemistry.  相似文献   
95.
96.
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+/nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006 , 30, 683–702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.  相似文献   
97.
98.
A methodology to purify a 166mHo solution has been developed by a combination of activity and mass concentration measurements in order to further determine the 166mHo half-life. The isobaric interference at m/q ? 166 requires Ho purification from non-natural Er with a high purification degree due to the large amount of Ho as opposed to Er. The Ho/Er separation was achieved using high-performance liquid chromatography on a semi-preparative column followed by purification on gravitational chromatography. The efficiency of the separation was evaluated after precise determination of the Er isotopic composition. The purification methodology enabled to separate Ho from Er.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号