排序方式: 共有98条查询结果,搜索用时 10 毫秒
71.
Sebastiaan Bijttebier Anastasia Van der Auwera Kenn Foubert Stefan Voorspoels Luc Pieters Sandra Apers 《Analytica chimica acta》2016
It is vital to pay much attention to the design of extraction methods developed for plant metabolomics, as any non-extracted or converted metabolites will greatly affect the overall quality of the metabolomics study. Method validation is however often omitted in plant metabolome studies, as the well-established methodologies for classical targeted analyses such as recovery optimization cannot be strictly applied. The aim of the present study is to thoroughly evaluate state-of-the-art comprehensive extraction protocols for plant metabolomics with liquid chromatography-photodiode array-accurate mass mass spectrometry (LC-PDA-amMS) by bridging the gap with method validation. 相似文献
72.
Comprehensive study of the macropore and mesopore size distributions in polymer monoliths using complementary physical characterization techniques and liquid chromatography 下载免费PDF全文
Sam Wouters Tom Hauffman Marjo C. Mittelmeijer‐Hazeleger Gadi Rothenberg Gert Desmet Gino V. Baron Sebastiaan Eeltink 《Journal of separation science》2016,39(23):4492-4501
Poly(styrene‐co‐divinylbenzene) monolithic stationary phases with two different domain sizes were synthesized by a thermally initiated free‐radical copolymerization in capillary columns. The morphology was investigated at the meso‐ and macroscopic level using complementary physical characterization techniques aiming at better understanding the effect of column structure on separation performance. Varying the porogenic solvent ratio yielded materials with a mode pore size of 200 nm and 1.5 μm, respectively. Subsequently, nano‐liquid chromatography experiments were performed on 200 μm id × 200 mm columns using unretained markers, linking structure inhomogeneity to eddy dispersion. Although small‐domain‐size monoliths feature a relatively narrow macropore‐size distribution, their homogeneity is compromised by the presence of a small number of large macropores, which induces a significant eddy‐dispersion contribution to band broadening. The small‐domain size monolith also has a relatively steep mass‐transfer term, compared to a monolith containing larger globules and macropores. Structural inhomogeneity was also studied at the mesoscopic level using gas‐adsorption techniques combined with the non‐local‐density‐function‐theory. This model allows to accurately determine the mesopore properties in the dry state. The styrene‐based monolith with small domain size has a distinctive trimodal mesopore distribution with pores of 5, 15, and 25 nm, whereas the monolith with larger feature sizes only contains mesopores around 5 nm in size. 相似文献
73.
Dominique J.D. Vanhoutte Sebastiaan Eeltink Wim Th. Kok Peter J. Schoenmakers 《Analytica chimica acta》2011,701(1):92
Spatial comprehensive two-dimensional chromatography is discussed as a potentially alternative to the conventional column-based approach. In “spatial” separations each analyte ends up in a specific location, rather than being eluted at a specific time. Ultimately, higher peak-capacity-production rates (peak capacity per unit time) may be attained by spatial two- and three-dimensional separations. While low-pressure planar chromatography is well developed, the high-pressure equivalent is still in its infancy. We discuss the requirements for a device for high-pressure spatial two-dimensional chromatography and we describe a possible design. A prototype instrument has been constructed in-house. The preparation of a polymer monolithic separation body and a valve configuration that allows manual sample injection are described. Initial tests of this study included the investigation of the homogeneity of the monolith and the flow profile through the separation body. Furthermore, in order to evaluate the current chromatographic performance of the device, a mixture of dyes was separated in one dimension within 30 s. 相似文献
74.
This review provides an overview of advances in system design for ion chromatography (IC), focusing on the suppressed conductivity detection mode. In particular, advances in automated mobile-phase generation and suppressor technology based on different electrolytic concepts are addressed and novel detection approaches are discussed. Finally, advances in multi-dimensional IC and aspects of miniaturization, including capillary IC instrumentation and chip-based IC, are discussed. 相似文献
75.
Monitoring the morphology development of polymer‐monolithic stationary phases by thermal analysis 下载免费PDF全文
Sam Wouters Bert Wouters Axel Vaast Herman Terryn Guy Van Assche Sebastiaan Eeltink 《Journal of separation science》2014,37(1-2):179-186
Thermal analysis and SEM were employed to gain insights in the different stages of morphology development and the thermal properties of polymer‐monolithic stationary phases. The studied system was a thermally initiated free‐radical copolymerization reaction at 70°C of styrene and divinylbenzene in the presence of tetrahydrofuran and 1‐decanol. The key events in the early stages of morphology development are initiation, chain growth, branching, and cyclization, leading to microgel particles. Interparticle reactions through pendant vinyl groups lead to the formation of microgel clusters. The rapid increase in molecular weight and cross‐link density of the microgel clusters causes a reaction‐induced phase separation, and the formation of a macroscopic network of interconnected globules was observed (macrogelation) at around 45 min. After 3 h or 65% conversion, a space‐filling macroporous monolithic network was observed. Afterwards, mainly growth of existing globules takes place, reducing the macropore size. The porogen ratio affects the timing of the reaction‐induced phase separation, strongly influencing the morphology of the polymer material. The use of a mixture of divinylbenzene isomers yielded a monolithic material that is less cross‐linked at the surface compared to the central part of the polymer backbone due to copolymerization‐composition drift. The less cross‐linked outer layer starts devitrifying at 100°C. 相似文献
76.
The most recent and important applications in capillary electrochromatography (CEC) are summarized, covering literature published since May 2001. A selection of new developments in stationary phases for CEC is highlighted, and enantiomeric separations and chiral stationary phases are discussed. Also, CEC applications of biological molecules, pharmaceuticals, and applications in the field of industrial and environmental analysis are summarized. For this review three modes of CEC were taken into account, i.e., packed-column CEC, CEC using monolith technology, and open-tubular CEC. 相似文献
77.
78.
Hoekstra S Gilijamse JJ Sartakov B Vanhaecke N Scharfenberg L van de Meerakker SY Meijer G 《Physical review letters》2007,98(13):133001
Optical pumping by blackbody radiation is a feature shared by all polar molecules and fundamentally limits the time that these molecules can be kept in a single quantum state in a trap. To demonstrate and quantify this, we have monitored the optical pumping of electrostatically trapped OH and OD radicals by room-temperature blackbody radiation. Transfer of these molecules to rotationally excited states by blackbody radiation at 295 K limits the 1/e trapping time for OH and OD in the X(2)Pi(3/2), v" =0, J"=3/2(f) state to 2.8 and 7.1 s, respectively. 相似文献
79.
The porous structure as well as the polarity of methacrylate ester-based monolithic stationary phases has been optimized to achieve the separation of various peptides originating from enzymatic digestion. The porous structure, determined by the size of both pores and microglobules, was varied through changes in the composition of porogenic solvents in the polymerization mixture, while the polarity was controlled through the incorporation of butyl, lauryl, or octadecyl methacrylate in the polymer backbone. Both the morphology and the chemistry of the monoliths had a significant effect on the retention and efficiency of the capillary columns. The best resolution of peptidic fragments obtained by digestion of Cytochrome c with trypsin in solution was obtained in a gradient LC-MS mode using a monolithic capillary column of poly(lauryl methacrylate-co-ethylene dimethacrylate) featuring small pores and small microglobules. Raising the temperature from 25 to 60 degrees C enabled separations to be carried out at 40% higher flow rates. Separations carried out at 60 degrees C with a steeper gradient proceeded without loss of performance in half the time required for a comparable separation at room temperature. Our preparation technique affords monolithic columns with excellent column-to-column and run-to-run repeatability of retention times and pressure drops. 相似文献
80.
Eeltink S Hilder EF Geiser L Svec F Fréchet JM Rozing GP Schoenmakers PJ Kok WT 《Journal of separation science》2007,30(3):407-413
Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties. 相似文献