排序方式: 共有98条查询结果,搜索用时 46 毫秒
11.
Mangelings D Tanret I Meert V Eeltink S Schoenmakers PJ Kok WT Vander Heyden Y 《Journal of chromatographic science》2007,45(9):578-586
Polymeric methacrylate-based monoliths are evaluated in capillary electrochromatography (CEC) and pressurized capillary electrochromatography (p-CEC) for their potential in pharmaceutical analysis. Using a given polymerization mixture as a basis for the monolith synthesis, different mobile phase pH at constant organic modifier concentrations are tested in both CEC and p-CEC. The test set consists of basic, acidic, amphoteric, and neutral compounds, which are mainly pharmaceuticals. Because of the mainly hydrophobic character of the stationary phase, the interactions are largest when the compounds appear in an uncharged state, but some ion-exchange phenomena with negatively charged compounds can also be observed. In CEC, acidic substances are most retained at low pH. For amphoteric and neutral compounds, no preference regarding analyzing pH can be derived from these experiments. For basics, a high pH is chosen, but a reduced solvent strength is needed to enhance the retention of these compounds. The retention mechanism in p-CEC can also be assigned to both hydrophobic and ionic interactions. For acidic, amphoteric, and neutral compounds, acceptable retention is seen. For the basic compounds, the retention with a mobile phase containing 50% organic modifier is low, as in CEC. However, when the organic modifier content in the mobile phase is decreased, retention increases and the selectivity of the stationary phase is more pronounced. This mode of operation presents a possibility for separating some test mixtures, thus some potential for pharmaceutical analysis is seen. More efforts are needed to obtain higher efficiencies and better peak shapes, which might be solved by a further optimization of both the stationary phase synthesis and the mobile phase composition. 相似文献
12.
13.
For a given set of stimulus frequencies (f1 ,f2), the level of distortion product otoacoustic emissions (DPOAEs) varies with the levels of the stimulus tones. By variation of the stimulus levels, L1,L2-maps for DPOAEs can be constructed. Here, we report on L1 ,L2-maps for DPOAEs from the frog ear. In general, these maps were similar to those obtained from the mammalian cochlea. We found a conspicuous difference between the equal-level contour lines for low-level and high-level DPOAEs, which could be modeled by a saturating and an expansive nonlinearity, respectively. The transition from the high-level to the low-level response was accompanied by a DPOAE phase-change, which increased from 0 to pi rad with increasing frequency. These results suggest that in the frog low-level and high-level DPOAEs are generated by separate nonlinear mechanisms. Also, there was a conspicuous difference in the growth of the low-level emissions from the two anuran auditory papillae. In the basilar papilla, this growth was expansive for the lowest stimulus levels and saturated for intermediate levels. This is consistent with the behavior of a Boltzman nonlinearity. In the amphibian papilla this growth was compressive, suggesting the additional effect of a compressive amplification mechanism on the generation of DPOAEs. 相似文献
14.
15.
C. S. Müller H. Auerbach K. Stegmaier J. A. Wolny V. Schünemann A. J. Pierik 《Hyperfine Interactions》2017,238(1):102
The Thermus thermophilus Rieske protein (TtRP) contains a 2Fe-2S cluster with one iron (Fe-Cys) coordinated by four sulfur atoms (2xS2? and 2xCys) and one iron (Fe-His) by two sulfur and two nitrogen atoms (2xS2?, His134 and His154). Here, the protein is investigated at three pH values (6.0, 8.5 and 10.5) in order to elucidate the protonation states of the His-ligands. Examination of the effect of protonation on the electronic structure of the cluster via Mössbauer spectroscopy gives a deeper understanding of the coupling of electron transfer to the protonation state of the His-ligands. Two components (1 referring to Fe-Cys and 2 to Fe-His) with parameters typical for a diamagnetic [2Fe-2S]2+ cluster are detected. The Mössbauer parameters and the protonation state clearly correlate: while δ remains almost pH-independent with δ 1 (pH6.0) =?0.23 (±?0.01) mms??1 and δ 1 (pH10.5) =?0.24 (±?0.01) mms??1 for Fe-Cys, it decreases for Fe-His from δ 2 (pH6.0) =?0.34 (±?0.01) mms??1 to δ 2 (pH10.5) =?0.28 (±?0.01) mms??1. ΔE Q changes from ΔE Q1 (pH6.0) =?0.57 (±?0.01) mms??1 to ΔE Q1 (pH10.5) =?0.45 (±?0.01) mms??1 and from ΔE Q2 (pH6.0) =?1.05 (±?0.01) mms??1 to ΔE Q2 (pH10.5) =?0.71 (±?0.01) mms??1. Density functional theory (DFT)-calculations based on the crystal structure (pdb 1NYK) (Hunsicker-Wang et al. Biochemistry 42, 7303, 2003) have been performed for the Rieske-cluster with different His-ligand protonation states, reproducing the experimentally observed trend. 相似文献
16.
Biswajit Pradhan Christopher Engelhard Sebastiaan Van Mulken Xueyan Miao Gerard W. Canters Michel Orrit 《Chemical science》2020,11(3):763
Monitoring the fluorescence of single-dye-labeled azurin molecules, we observed the reaction of azurin with hexacyanoferrate under controlled redox potential yielding data on the timing of individual (forward and backward) electron transfer (ET) events. Change-point analysis of the time traces demonstrates significant fluctuations of ET rates and of mid-point potential E0. These fluctuations are a signature of dynamical heterogeneity, here observed on a 14 kDa protein, the smallest to date. By correlating changes in forward and backward reaction rates we found that 6% of the observed change events could be explained by a change in midpoint potential, while for 25% a change of the donor–acceptor coupling could explain the data. The remaining 69% are driven by variations in complex association constants or structural changes that cause forward and back ET rates to vary independently. Thus, the observed spread in individual ET rates could be related in a unique way to variations in molecular parameters. The relevance for the understanding of metabolic processes is briefly discussed.Observing electron transfer events in individual azurin molecules, we relate the spread in transfer rates in a unique way to variations in molecular parameters. 相似文献
17.
In this review research papers on the application of CEC are summarized that have been published between May 2003 and May 2005. First, a short overview is given of trends and developments in CEC that may increase the applicability of the separation technique. Next, application-oriented research using CEC is described in biochemical studies, including proteomics and genomics, in the analysis of food and natural products, and in pharmaceutical, industrial, and environmental analysis. 相似文献
18.
Eeltink S Desmet G Vivó-Truyols G Rozing GP Schoenmakers PJ Kok WT 《Journal of chromatography. A》2006,1104(1-2):256-262
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance. 相似文献
19.
Levkin PA Eeltink S Stratton TR Brennen R Robotti K Yin H Killeen K Svec F Fréchet JM 《Journal of chromatography. A》2008,1200(1):55-61
Poly(lauryl methacrylate-co-ethylene dimethacrylate) and poly(styrene-co-divinylbenzene) stationary phases in monolithic format have been prepared by thermally initiated free radical polymerization within polyimide chips featuring channels having a cross-section of 200micromx200microm and a length of 6.8cm. These chips were then used for the separation of a mixture of proteins including ribonuclease A, myoglobin, cytochrome c, and ovalbumin, as well as peptides. The separations were monitored by UV adsorption. Both the monolithic phases based on methacrylate and on styrene chemistries enabled the rapid baseline separation of most of the test mixtures. Best performance was achieved with the styrenic monolith leading to fast baseline separation of all four proteins in less than 2.5min. The in situ monolith preparation process affords microfluidic devices exhibiting good batch-to-batch and injection-to-injection repeatability. 相似文献
20.
Sebastiaan F. Teunissen Marcos N. Eberlin 《Journal of the American Society for Mass Spectrometry》2017,28(11):2255-2261
The efficient formation of gaseous ions is the crucial step in all successful mass spectrometric experiments. The invention of electrospray ionization (ESI) has strongly facilitated this step by transferring preformed ions directly from solution to the gas phase – thereby circumventing the need to first convert analytes to the gas phase and then ionize them – and therefore ESI has become an extremely useful and widely applied MS technique. The invention of sonic spray ionization (SSI) has also allowed for the transfer of ions from solution into the gas phase, but without the assistance of a voltage or heating. Numerous ionization techniques, using similar principles to those applied in either ESI or SSI, have subsequently been developed. Although experimental conditions used in such techniques vary markedly, herein we argue that they are all based on either one of two basic principles by which ions can be transferred from solution to the gas phase, that is: via (1) neutralizing the counter ion, or (2) separating the ions. We have selected 35 such techniques and categorized them accordingly. This article thereby aims to establish the basic principles by which gaseous ions can be obtained from solvated ions. We further propose that any new ionization technique used to transfer solvated ions to the gas phase will similarly fall into one of these two mechanistic categories. 相似文献