首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   15篇
  国内免费   6篇
化学   483篇
晶体学   4篇
力学   10篇
数学   138篇
物理学   275篇
  2021年   10篇
  2018年   7篇
  2016年   9篇
  2015年   12篇
  2014年   14篇
  2013年   46篇
  2012年   28篇
  2011年   53篇
  2010年   32篇
  2009年   18篇
  2008年   36篇
  2007年   39篇
  2006年   45篇
  2005年   36篇
  2004年   31篇
  2003年   22篇
  2002年   22篇
  2001年   16篇
  2000年   22篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   19篇
  1995年   10篇
  1994年   18篇
  1993年   18篇
  1992年   20篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   10篇
  1987年   11篇
  1986年   15篇
  1985年   22篇
  1984年   10篇
  1983年   11篇
  1982年   5篇
  1981年   14篇
  1980年   17篇
  1979年   11篇
  1978年   15篇
  1977年   20篇
  1976年   11篇
  1975年   18篇
  1974年   7篇
  1973年   10篇
  1972年   7篇
  1970年   5篇
  1968年   5篇
  1966年   5篇
排序方式: 共有910条查询结果,搜索用时 359 毫秒
11.
A direct comparison of surface loading, interface shear strength, and interface hydrolytic stability was made between a phosphonate and two siloxane monolayers formed on the native oxide surface of Ti-6Al-4V. Surface loading for the phosphonate was ca. four times greater (on a nanomole/area basis) than for the siloxanes; mechanical strengths per surface-bound molecule were comparable, but the hydrolytic stability (pH 7.5) of the siloxanes was poor. These results suggest that phosphonate monolayer interfaces are more desirable than comparable siloxane ones for applications where such interfaces contact even slightly alkaline water.  相似文献   
12.
We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu(2)O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room-temperature precursor electrolyte. The functional TraI derivative (TraIi1753::CN225) is engineered to possess a cysteine-constrained 12-residue Cu(2)O binding sequence, designated CN225, that is inserted into a permissive site in TraI. When TraIi1753::CN225 is included in the precursor electrolyte, stable Cu(2)O nanoparticles form, even though the concentrations of [Cu(+)] and [OH(-)] are at 5% of the solubility product (K(sp,Cu2O)). Negative control experiments verify that Cu(2)O formation is controlled by inclusion of the CN225 binding sequence. Transmission electron microscopy and electron diffraction reveal a core-shell structure for the nonequilibrium nanoparticles: a 2 nm Cu(2)O core is surrounded by an adsorbed protein shell. Quantitative protein adsorption studies show that the unexpected stability of Cu(2)O is imparted by the nanomolar surface binding affinity of TraIi1753::CN225 for Cu(2)O (K(d) = 1.2 x 10(-)(8) M), which provides favorable interfacial energetics (-45 kJ/mol) for the core-shell configuration. The protein shell retains the DNA-binding traits of TraI, as evidenced by the spontaneous organization of nanoparticles onto circular double-stranded DNA.  相似文献   
13.
The directed three-dimensional self-assembly of microstructures and nanostructures through the selective hybridization of DNA is the focus of great interest toward the fabrication of new materials. Single-stranded DNA is covalently attached to polystyrene latex microspheres. Single-stranded DNA can function as a sequence-selective Velcro by only bonding to another strand of DNA that has a complementary sequence. The attachment of the DNA increases the charge stabilization of the microspheres and allows controllable aggregation of microspheres by hybridization of complementary DNA sequences. In a mixture of microspheres derivatized with different sequences of DNA, microspheres with complementary DNA form aggregates, while microspheres with noncomplementary sequences remain suspended. The process is reversible by heating, with a characteristic "aggregate dissociation temperature" that is predictably dependent on salt concentration, and the evolution of aggregate dissociation with temperature is observed with optical microscopy.  相似文献   
14.
We have studied the growth kinetics of self-assembled monolayers (SAMs) ofoctadecyltrimethylammonium bromide (C18TAB) on mica below the critical micelle concentration at 22, 30, 40, and 50 degrees C. A combination of atomic force microscopy, contact angle goniometry, and transmission infrared spectroscopy was used to follow the growth processes to determine the rates involved in the growth of a C18TAB SAM on mica. The growth of a SAM consisted of four distinct processes: deposition of adsorbate molecules, growth of a disordered 2D liquid phase, nucleation of islands of an ordered 2D solid phase, and subsequent growth of the solid phase. The rates of these various processes are determined, and the activation energies for several processes were calculated including those for the adsorption onto a bare substrate (20 kJ/mol), adsorption into the saturated liquid phase (100 kJ/mol), and nucleation of islands (0.3 kJ/mol). Despite the small activation barrier to island nucleation, the nucleation rate is qualitatively slow, suggesting that entropic effects dominate the nucleation rate.  相似文献   
15.
Nonsteroidal antiinflammatory drugs(NSAIDs) are known as clinically effective agents for treatment of inflammatory diseases. Inhibition of cyclooxygenase has been thought to be a major facet of the pharmacological mechanism of NSAIDs. However, it is difficult to ascribe the antiinflammatory effects of NSAIDs solely to the inhibition of prostaglandin synthesis. Human neutrophil elastase (HNElastase; HNE, EC 3.4.21.37) has been known as a causative factor in inflammatory diseases. To investigate the specific relationship between HNElastase inhibition and specificity of molecular structure of several NSAIDs, HNElastase was purified by Ultrogel AcA54 gel filtration, CM-Sephadex ion exchange, and HPLC (with TSK 250 column) chromatography. HNElastase was inhibited by aspirin and salicylate in a competitive manner and by naproxen, ketoprofen, phenylbutazone, and oxyphenbutazone in a partial competative manner, but not by ibuprofen and tolmetin. HNElastase-phenylbutazone-complex showed strong Raman shifts at 200, 440, 1124, 1194, 1384, 1506, and 1768 cm(-1). The Raman bands 1194, 1384, and 1768 cm(-1) may represent evidences of the conformational change at -N=N-phi radical, pyrazol ring, and -C=O radical of the elastase-drug complex, respectively. Phenylbutazone might be bound to HNElastase by ionic and hydrophobic interaction, and masked the active site. Inhibition of HNElastase could be another mechanism of action of NSAIDs besides cyclooxygenase inhibition in the treatment of inflammatory diseases. Different inhibition characteristics of HNE-lastase by NSAIDs such as aspirin, phenylbutazone-like drugs and ineffective drugs could be important points for drawing the criteria for appropriate drugs in clinical application.  相似文献   
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号