A catalytic asymmetric Passerini reaction using tridentate indan (pybox) Cu(II) Lewis acid complex 4 with substrates capable of bidentate coordination has been achieved. The reaction occurs via ligand-accelerated catalysis. 相似文献
[reaction: see text] A library of nine-membered, biaryl-containing rings has been synthesized in parallel on polystyrene macrobeads. Dimeric medium rings were shown to be accessible via a regio- and stereoselective double cyclization. 相似文献
[reaction: see text] Two pairs of complexity-generating reactions with an essential product-substrate relationship along a synthetic pathway are demonstrated. This pathway illustrates a key element in a planning algorithm for diversity-oriented synthesis. This element facilitates the efficient synthesis of structurally complex compounds, and it can be integrated with ones that provide structurally diverse compounds. 相似文献
The availability for the first time of detailed rate constants k(V′, R′, T′) (where V′, R′ and T′ are product vibrational, rotational and translational excitation) for the highly exothermic reaction H + F2 → HF(V′, R′) + F has prompted the 3D classical-trajectory study reported here. The potential-energy surface is found to be predominantly repulsive (⊥ ≈ 42%, R⊥ ≈ 58%) corresponding to the rather low fractional conversion of reaction energy into vibration ((f′V) = 0.58 from experiment, and 0.56 from theory). In the homologous series of reactions H + X2 (X F, Cl, Br, I) the percentage of repulsive energy-release decreases for X Cl, Br, I, but increases from X F to Cl. It is shown that this cannot be due to charge in mass-combination, but can plausibly be explained by the anomolously short range of interaction between the separating X atoms in the case X F. It is predicted that the more-forward scattered HF will be more rotationally excited. The form of the cross section function Sr(T) (where T is reagent translation) is analysed. In accordance with the expectation for a strongly exothermic reaction, it is found that Sr(T) rises more steeply than Sr(V) (where V is reagent vibrational energy). The effect on the product energy distribution conforms qualitatively to the “adiabatic” behaviour noted in previous work: ΔT → ΔT′ + ΔR′; ΔV → ΔV′. The explanation is to be found in reaction through more-compressed or more-extended intermediate configurations than are characteristic of room temperature reaction. We note the existence of an amplification effect: (ΔT′ + ΔR′)/ΔT ≈ 2, and ΔV′/ΔV ≈ 2. 相似文献
The results of experimental studies and quantum mechanical calculations of vibrational spectra and structure of hydrogen bonded complexes formed by pyrazole (P) and 3,5-dimethylpyrazole (DMP) are presented. IR spectra of pyrazoles in solutions, gas phase, and solid state have been investigated in wide range of concentrations and temperatures. It has been found that in the gas phase both P and DMP reveal the equilibrium between monomers, dimers, and trimers. In solutions the equilibrium between monomers and trimers dominates, no bands, which can be attributed to dimers were detected. DMP retains the trimer structure in solid state, while in the case of pyrazole P, formation of the crystal provides another type of association. Geometrical and spectral characteristics of dimers and trimers, obtained by ab initio calculations, are presented and compared with experimental data.
IR spectra of solutions containing P and DMP with a number of acids (acetic and trifluoroacetic acids, pentachlorophenol, HBr) have been studied in parallel with ab initio calculations. It has been found that pentachlorophenol forms with pyrazoles complexes with one strong hydrogen bond O–HN, while NH pyrazole group remains unbonded. With carboxylic acids DMP forms 1:1 cyclic complexes with two hydrogen bonds. In the case of acetic acid, the complex in CH2Cl2 solution reveals molecular structure with OHN and C=OHN bonds, in accordance with results of the calculations. For trifluoroacetic acid, the calculations predict the molecular structure to be energetically more stable in the case of the isolated binary complex (in gas phase), while the experimental spectrum of CH2Cl2 solution gives an evidence of the proton transfer with formation of the cyclic ionic pair with two NH+O− bonds. The agreement with experimental results can be improved by taking into account the influence of environment in the framework of Onsager or Tomasi models. The shape of proton potential function of the complexes and medium effect on its parameters, resulted from experimental data and calculations, are discussed. It has been found that the number of potential minima and their relative depth depend strongly on the method of calculations and the basic set. Under excess of trifluoroacetic acid, the formation of 2:1 acid–DMP complex has been detected. Spectral characteristics and results of calculations point to the cyclic structure of this complex, which includes homoconjugated bis-trifluoroacetate anion and DMPH+ cation. With HBr both studied pyrazoles were found to form ionic complexes including one or two pyrazole molecules per one acid molecule and correspondingly monocation or homoconjugated cation BHB+. 相似文献
The efficient total synthesis of the recently described natural substance largazole (1) and its active metabolite largazole thiol (2) is described. The synthesis required eight linear steps and proceeded in 37% overall yield. It is demonstrated that largazole is a pro-drug that is activated by removal of the octanoyl residue from the 3-hydroxy-7-mercaptohept-4-enoic acid moiety to generate the active metabolite 2, which is an extraordinarily potent Class I histone deacetylase inhibitor. Synthetic largazole and 2 have been evaluated side-by-side with FK228 and SAHA for inhibition of HDACs 1, 2, 3, and 6. Largazole and largazole thiol were further assayed for cytotoxic activity against a panel of chemoresistant melanoma cell lines, and it was found that largazole is substantially more cytotoxic than largazole thiol; this difference is attributed to differences in the cell permeability of the two substances. 相似文献
Target identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of?AAK1?alters ErbB4 trafficking and expression levels,?providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic?factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development. 相似文献
A wet chemical approach from organometallic reactants allowed the targeted synthesis of Co@Fe(2)O(3) heterodimer and CoFe(2)O(4) ferrite nanoparticles. They display magnetic properties that are useful for magnetic MRI detection. 相似文献