首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   21篇
  国内免费   3篇
化学   581篇
晶体学   5篇
力学   8篇
数学   117篇
物理学   157篇
  2021年   5篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   19篇
  2015年   13篇
  2014年   19篇
  2013年   31篇
  2012年   50篇
  2011年   72篇
  2010年   41篇
  2009年   26篇
  2008年   46篇
  2007年   55篇
  2006年   44篇
  2005年   34篇
  2004年   34篇
  2003年   30篇
  2002年   35篇
  2001年   21篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1996年   16篇
  1995年   14篇
  1994年   14篇
  1993年   12篇
  1992年   19篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1988年   3篇
  1987年   14篇
  1986年   6篇
  1985年   11篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1970年   4篇
  1958年   5篇
  1956年   3篇
  1955年   3篇
排序方式: 共有868条查询结果,搜索用时 3 毫秒
71.
The dependence of analyte sensitivity and vaporization efficiency on the operating parameters of an inductively coupled plasma mass spectrometer (ICPMS) was investigated for a wide range of elements in aerosols, produced by laser ablation of silicate glass. The ion signals were recorded for different carrier gas flow rates at different plasma power for two different laser ablation systems and carrier gases. Differences in atomization efficiency and analyte sensitivity are significant for the two gases and the particle size distribution of the aerosol. Vaporization of the aerosol is enhanced when helium is used, which is attributed to a better energy-transfer from the plasma to the central channel of the ICP and a higher diffusion rate of the vaporized material. This minimizes elemental fractionation caused by sequential evaporation and reduces diffusion losses in the ICP. The sensitivity change with carrier gas flow variation is dependent on m/z of the analyte ion and the chemical properties of the element. Elements with high vaporization temperatures reach a maximum at lower gas flow rates than easily vaporized elements. The sensitivity change is furthermore dependent on m/z of the analyte ion, due to the mass dependence of the ion kinetic energies. The mass response curve of the ICPMS is thus not only a result of space charge effects in the ion optics but is also affected by radial diffusion of analyte ions and the mismatch between their kinetic energy after expansion in the vacuum interface and the ion optic settings.  相似文献   
72.
73.
74.
The isotopic abundances and thus molar mass M(Si) of a silicon crystal material with natural isotopic abundances have been measured for the first time using multicollector-ICP-mass spectrometry (MC-ICP-MS) in combination with a novel concept of a modified isotope dilution mass spectrometry (IDMS)-method. This experimental work is the further development of part 1 of this series of papers. While part 1 describes the theoretical background and the mathematical derivation of the novel concept in detail, the measurements presented here serve to validate the novel concept and give experimental proof of its capability. Moreover, the also new method for the analytical calculation of calibration factors needed in the determination of absolute isotope amount ratios has been tested successfully. Silicon isotopic abundances have been measured directly from an aqueous alkaline matrix following a new sample preparation protocol developed within the framework of this study. A molar mass of M(Si) = 28.08548(13) g/mol with an associated relative uncertainty of urel = 4.6 × 10?6 (k = 1) has been measured. This is in excellent agreement with the current IUPAC value for the molar mass of natural silicon M(Sinat) = 28.08550(15) g/mol with urel = 5.3 × 10?6 (k = 1). An uncertainty budget according to the Guide to the Expression of Uncertainty in Measurement (GUM) was calculated to assess the presented results and to validate the novel concept with the help of experimental data. The development of a new experimental procedure is presented in detail and the contributions to the uncertainty are discussed in comparison to part 1 of this work.  相似文献   
75.
The mechanism of the asymmetric hydrogenation of methyl (Z)-2-acetamidocinnamate (mac) catalysed by [Rh(MonoPhos)(2)(nbd)]SbF(6) (MonoPhos: 3,5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)dimethylamine) was elucidated by using (1)H, (31)P and (103)Rh NMR spectroscopy and ESI-MS. The use of nbd allows one to obtain in pure form the rhodium complex that contains two units of the ligand. In contrast to the analogous complexes that contain cis,cis-1,5-cyclooctadiene (cod), this complex shows well-resolved NMR spectroscopic signals. Hydrogenation of these catalyst precursors at 1 bar total pressure gave rise to the formation of a bimetallic complex of general formula [Rh(MonoPhos)(2)](2)(SbF(6))(2); no solvate complexes were detected. In the dimeric complex both rhodium atoms are ligated to two MonoPhos ligands but, in addition, each rhodium atom also binds to one of the binaphthyl rings of a ligand that is bound to the other rhodium metal. Upon addition of mac, a mixture of diastereomeric complexes [Rh(MonoPhos)(2)(mac)]SbF(6) is formed in which the substrate is bound in a chelate fashion to the metal. Upon hydrogenation, these adducts are converted into a new complex [Rh(MonoPhos)(2){mac(H)(2)}]SbF(6) in which the methyl phenylalaninate mac(H)(2) is bound through its aromatic ring to rhodium. Addition of mac to this complex leads to displacement of the product by the substrate. No hydride intermediates could be detected and no evidence was found for the involvement at any stage of the process of complexes with only one coordinated MonoPhos. The collected data suggest that the asymmetric hydrogenation follows a Halpern-like mechanism in which the less abundant substrate-catalyst adduct is preferentially hydrogenated to phenylalanine methyl ester.  相似文献   
76.
The reactions of methane with the dications C7H62+, C7H72+, and C7H82+ generated by electron ionization of toluene are studied using mass-spectrometry tools. It is shown that the reactivity is dominated by the formation of doubly charged intermediates, which can either eliminate molecular hydrogen to yield doubly charged products or undergo charge-separation reactions leading to the formation of a methyl cation and the corresponding C7Hn+1+ monocation. Typical processes observed for dications, like electron transfer or proton transfer, are largely suppressed. The theoretically derived mechanism of the reaction between C7H62+ and CH4 indicates that the formation of the doubly charged intermediate is kinetically preferred at low internal energies of the reactants. In agreement, the experimental results show a pronounced hydrogen scrambling and dominant formation of the doubly charged products at low collision energies, whereas direct hydride transfer prevails at larger collision energies.  相似文献   
77.
The consecutive fragmentation of ionized trimethyl vanadate(V), OV(OCH3)3 (1), is examined by experiment and theory. After an elimination of formaldehyde from the molecular ion 1+, subsequent dissociations proceed via losses of first H2 and then two molecules of formaldehyde to finally yield the VOH+ cation; these redox reactions involve the V(II)/V(IV) manifold. At elevated energies, expulsion of CH3O* from 1+ can efficiently compete to afford OV(OCH3)2+, a formal V(V) compound, from which subsequent losses of H2 and two units of CH2O lead to bare VO+, thereby exploring the V(III)/V(V) redox manifold. Experiments using complementary mass spectrometric techniques, i.e., neutralization-reionization experiments and ion/molecule reactions, in conjunction with extensive computational studies provide deep insight into the ion structures and the relative energetics of these dissociation reactions. In particular, a quantitative energetic scheme is obtained that ranges from neutral OV(OCH3)3 all the way down to the quasi-terminal fragment ions VOH+ and VO+, respectively.  相似文献   
78.
A number of azanonaboranes containing imidazole derivatives have been synthesized by a ligand-exchange reaction. The exo-NH(2)R group of the azanonaborane of the type [(RH(2)N)B(8)H(11)NHR] can be exchanged by one hetero-nitrogen atom of the imidazole ring. In the case of histamine, the exchange takes place on the aliphatic amino group, the hetero-nitrogen atom of the imidazole ring or both of them. The products were confirmed by NMR, IR spectroscopy, elemental analysis, and mass spectrometry. The electron-withdrawing effect of the nitro group in 2-nitroimidazole is the main hindrance to achieve the exchange reaction. In vitro experiments were performed with B16 melanoma cells. A comparison of the biological properties of the products in which the B(8)N cluster is connected to the hetero-nitrogen atom of imidazole ring or the aliphatic NH(2) group showed that incorporation of B(8)N cluster unit into primary amino group increases the compound's toxicity. In contrast, this specificity for cytotoxicity effect was not observed in the case of histamine containing two B(8)N clusters which was relatively nontoxic and did not inhibit colony formation up to concentrations of 2 mM.  相似文献   
79.
A purge and trap (P&T) continuous flow system was developed in order to concentrate high volumes of water for trace analyses and stable carbon isotope measurements of volatile halogenated organic compounds (VHOCs) in seawater. The P&T parameters were evaluated regarding quality parameters, extraction efficiency and isotope fractionation. Precision (about 20%), linearity (>0.9676), and recoveries (between 75% and 99%) were reasonable within the large concentration range tested. Isotope fractionation was between 1 per thousand and 3 per thousand. Finally, the developed system was successfully applied to the quantitative and stable carbon isotope analysis of three water samples of different origin.  相似文献   
80.
Isotopic 13C NMR spectrometry, which is able to measure intra-molecular 13C composition, is of emerging demand because of the new information provided by the 13C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13C NMR was then assessed on vanillin from three different origins associated with specific δ13Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ13Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号