首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357篇
  免费   49篇
  国内免费   16篇
化学   1003篇
晶体学   7篇
力学   68篇
数学   170篇
物理学   174篇
  2023年   10篇
  2022年   51篇
  2021年   74篇
  2020年   44篇
  2019年   68篇
  2018年   65篇
  2017年   41篇
  2016年   62篇
  2015年   54篇
  2014年   82篇
  2013年   142篇
  2012年   100篇
  2011年   96篇
  2010年   73篇
  2009年   58篇
  2008年   57篇
  2007年   58篇
  2006年   49篇
  2005年   46篇
  2004年   24篇
  2003年   22篇
  2002年   16篇
  2001年   9篇
  2000年   16篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   3篇
  1981年   6篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1968年   2篇
  1965年   1篇
  1936年   1篇
排序方式: 共有1422条查询结果,搜索用时 0 毫秒
11.
This study describes the preparation of graphitic carbon nitride (g-C3N4), hematite (α-Fe2O3), and their g-C3N4/α-Fe2O3 heterostructure for the photocatalytic removal of methyl orange (MO) under visible light illumination. The facile hydrothermal approach was utilized for the preparation of the nanomaterials. Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) were carried out to study the physiochemical and optoelectronic properties of all the synthesized photocatalysts. Based on the X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance (DRS) results, an energy level diagram vs. SHE was established. The acquired results indicated that the nanocomposite exhibited a type-II heterojunction and degraded the MO dye by 97%. The degradation ability of the nanocomposite was higher than that of pristine g-C3N4 (41%) and α-Fe2O3 (30%) photocatalysts under 300 min of light irradiation. The formation of a type-II heterostructure with desirable band alignment and band edge positions for efficient interfacial charge carrier separation along with a larger specific surface area was collectively responsible for the higher photocatalytic efficiency of the g-C3N4/α-Fe2O3 nanocomposite. The mechanism of the nanocomposite was also studied through results obtained from UV-vis and XPS analyses. A reactive species trapping experiment confirmed the involvement of the superoxide radical anion (O2•−) as the key reactive oxygen species for MO removal. The degradation kinetics were also monitored, and the reaction was observed to be pseudo-first order. Moreover, the sustainability of the photocatalyst was also investigated.  相似文献   
12.
Transient creep of Cd-2 wt. % Zn and Cd-17·4 wt. % Zn alloys has been studied under different constant stresses ranging from 6·4 MPa to 12·7 MPa near the transformation temperature. The results of both compositions showed two transient deformation regions, the low temperature region (below 483 K) and the high temperature region (above 483 K). From the transient creep described by the equation tr=Bt n, where tr andt are the transient creep strain and time. The parametersB andn were calculated. The parameterB was found to change with the applied stress from 0·3×10–4 to 3×10–4 and from 0·6×10–4 to 18×10–4 for Cd-2 wt. % Zn and Cd-17·4 wt. % Zn, respectively. The exponentn was found to change from 0·8 to 0·95 for both alloys. The parameterB was related to the steady state creep rate through the equation , the exponent was found to be 0·5 for Cd-2 wt. % Zn and 0·6 for the eutectic composition. The activation energies of transient creep in the vicinity of the transformation regions (above 483 K) were found to be 50·2 kJ/mole for Cd-2 wt. % Zn and 104·7 kJ/mole for the eutectic composition characterizing the mechanisms of grain boundary diffusion and volume diffusion in Cd, respectively.  相似文献   
13.
Nonlinear Dynamics - In this paper, a numerical simulation of an anomalous reaction–diffusion process in two-dimensional space with a nonlinear source term is presented. An efficient and...  相似文献   
14.
In the recent decade, the meshless methods have been handled for solving most of PDEs due to easiness of the meshless methods. One of the popular meshless methods is the element-free Galerkin (EFG) method that was first proposed for solving some problems in the solid mechanics. The test and trial functions of the EFG are based on the special basis. Recently, some modifications have been developed to improve the EFG method. One of these improvements is the variational multiscale EFG procedure. In the current article, the shape functions of interpolation moving least squares approximation have been applied to the variational multiscale EFG technique for solving the incompressible magnetohydrodynamics flow. In order to reduce the elapsed CPU time of simulation, we employ a reduced-order model based on the proper orthogonal decomposition technique. The current combination can be referred to as the reduced-order variational multiscale EFG technique. To illustrate the reduction in CPU time used as well as the efficiency of the proposed method, we applied it for the two-dimensional cases.  相似文献   
15.
Research on Chemical Intermediates - Zinc oxide nanoparticles (ZnO-NPs) are known as a material in the treatment of environmental pollutions. In this study, ZnO-NPs were synthesized using...  相似文献   
16.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents anO(n 2) time sequential algorithm and anO(n 2/p+logn) time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, wherep andn represent respectively the number of processors and the number of vertices of the circular-arc graph.  相似文献   
17.
The problem of free convection fluid flow and heat transfer of Cu–water nanofluid inside a square cavity having adiabatic square bodies at its center has been investigated numerically. The governing equations have been discretized using the finite volume method. The SIMPLER algorithm was employed to couple velocity and pressure fields. Using the developed code, a parametric study was conducted and the effects of pertinent parameters such as Rayleigh number, size of the adiabatic square body, and volume fraction of the Cu nanoparticles on the fluid flow and thermal fields and heat transfer inside the cavity were investigated. The obtained results show that for all Rayleigh numbers with the exception of Ra = 104 the average Nusselt number increases with increase in the volume fraction of the nanoparticles. At Ra = 104 the average Nusselt number is a decreasing function of the nanoparticles volume fraction. Moreover at low Rayleigh numbers (103 and 104) the rate of heat transfer decreases when the size of the adiabatic square body increases while at high Rayleigh numbers (105 and 106) it increases.  相似文献   
18.
We present the method of lines (MOL), which is based on the spectral collocation method, to solve space‐fractional advection‐diffusion equations (SFADEs) on a finite domain with variable coefficients. We focus on the cases in which the SFADEs consist of both left‐ and right‐sided fractional derivatives. To do so, we begin by introducing a new set of basis functions with some interesting features. The MOL, together with the spectral collocation method based on the new basis functions, are successfully applied to the SFADEs. Finally, four numerical examples, including benchmark problems and a problem with discontinuous advection and diffusion coefficients, are provided to illustrate the efficiency and exponentially accuracy of the proposed method.  相似文献   
19.
In bicelle bacteriorhodopsin (bcbR) crystals, the protein has a different structure from both native bacteriorhodopsin (bR) and in-cubo bR (cbR) crystals. Recently, we studied the ability of bcbR crystals to undergo the photocycle upon laser excitation, characterized by the appearance of the M intermediate by single crystal resonance Raman spectroscopy. Calculation of the M lifetime by flash photolysis experiments demonstrated that in our bcbR crystals, the M rise time is much faster than in the native or cbR crystals, with a decay time that is much slower than these other two forms. Although it is now known that the bcbR crystals are capable of photochemical deprotonation, it is not known whether photochemical deprotonation is the only way to create the deprotonated Schiff base in the bcbR crystals. We measured both the visible and Raman spectra of crystals dried under ambient lighting and dried in the dark in order to determine whether the retinal Schiff base is able to thermally deprotonate in the dark. In addition, changes in the visible spectrum of single bcbR crystals under varying degrees of hydration and light exposure were examined to better understand the retinal binding environment.  相似文献   
20.
Spectrophotometric studies on the reaction between molybdenum as molybdate (MoO42?) and phenylfluorone are presented. The reaction conditions are optimized to develop an intense color (molar absorptivity is 3.8 × 103) selective and sensitive for the Spectrophotometric determination of molybdenum. The absorbance is measured at 560 nm, at a pH of 1.5–3. The colored complex is stable for up to 24 hr, Beer's law is obeyed, over the concentration range of 1 to 4 μg/25 ml. The relative standard deviation is 2% and the sensitivity of the method is 1.60 × 10?4 mg/ml.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号