首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11676篇
  免费   451篇
  国内免费   134篇
化学   8105篇
晶体学   119篇
力学   576篇
综合类   3篇
数学   1379篇
物理学   2079篇
  2024年   159篇
  2023年   124篇
  2022年   521篇
  2021年   504篇
  2020年   441篇
  2019年   524篇
  2018年   485篇
  2017年   390篇
  2016年   670篇
  2015年   455篇
  2014年   619篇
  2013年   1154篇
  2012年   870篇
  2011年   835篇
  2010年   610篇
  2009年   484篇
  2008年   527篇
  2007年   474篇
  2006年   336篇
  2005年   336篇
  2004年   207篇
  2003年   208篇
  2002年   180篇
  2001年   95篇
  2000年   66篇
  1999年   71篇
  1998年   45篇
  1997年   56篇
  1996年   54篇
  1995年   39篇
  1994年   48篇
  1993年   23篇
  1992年   43篇
  1991年   41篇
  1990年   33篇
  1989年   43篇
  1988年   42篇
  1987年   38篇
  1986年   33篇
  1985年   43篇
  1984年   37篇
  1983年   27篇
  1982年   31篇
  1981年   21篇
  1980年   27篇
  1979年   24篇
  1978年   22篇
  1976年   18篇
  1975年   14篇
  1974年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
    
The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a–l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a–d, respectively. The in vitro inhibitory activity of compounds 4a–l and 5a–d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5–8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.  相似文献   
972.
    
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   
973.
    
MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.  相似文献   
974.
    
SARS CoV-2 pandemic is still considered a global health disaster, and newly emerged variants keep growing. A number of promising vaccines have been recently developed as a protective measure; however, cost-effective treatments are also of great importance to support this critical situation. Previously, betulinic acid has shown promising antiviral activity against SARS CoV via targeting its main protease. Herein, we investigated the inhibitory potential of this compound together with three other triterpene congeners (i.e., ursolic acid, maslinic acid, and betulin) derived from olive leaves against the viral main protease (Mpro) of the currently widespread SARS CoV-2. Interestingly, betulinic, ursolic, and maslinic acids showed significant inhibitory activity (IC50 = 3.22–14.55 µM), while betulin was far less active (IC50 = 89.67 µM). A comprehensive in-silico analysis (i.e., ensemble docking, molecular dynamic simulation, and binding-free energy calculation) was then performed to describe the binding mode of these compounds with the enzyme catalytic active site and determine the main essential structural features required for their inhibitory activity. Results presented in this communication indicated that this class of compounds could be considered as a promising lead scaffold for developing cost-effective anti-SARS CoV-2 therapeutics.  相似文献   
975.
    
Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2’-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N’1, N’3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10−5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298–328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors.  相似文献   
976.
    
Benzopyrene [B(a)P] is a well-recognized environmental carcinogen, which promotes oxidative stress, inflammation, and other metabolic complications. In the current study, the therapeutic effects of thymoquinone (TQ) against B(a)P-induced lung injury in experimental rats were examined. B(a)P used at 50 mg/kg b.w. induced lung injury that was investigated via the evaluation of lipid profile, inflammatory markers, nitric oxide (NO), and malondialdehyde (MDA) levels. B(a)P also led to a decrease in superoxide dismutase (SOD) (34.3 vs. 58.5 U/mg protein), glutathione peroxidase (GPx) (42.4 vs. 72.8 U/mg protein), catalase (CAT) (21.2 vs. 30.5 U/mg protein), and total antioxidant capacity compared to normal animals. Treatment with TQ, used at 50 mg/kg b.w., led to a significant reduction in triglycerides (TG) (196.2 vs. 233.7 mg/dL), total cholesterol (TC) (107.2 vs. 129.3 mg/dL), and inflammatory markers and increased the antioxidant enzyme level in comparison with the group that was administered B(a)P only (p < 0.05). B(a)P administration led to the thickening of lung epithelium, increased inflammatory cell infiltration, damaged lung tissue architecture, and led to accumulation of collagen fibres as studied through haematoxylin and eosin (H&E), Sirius red, and Masson’s trichrome staining. Moreover, the recognition of apoptotic nuclei and expression pattern of NF-κB were evaluated through the TUNEL assay and immunohistochemistry, respectively. The histopathological changes were found to be considerably low in the TQ-treated animal group. The TUNEL-positive cells increased significantly in the B(a)P-induced group, whereas the TQ-treated group showed a decreased apoptosis rate. Significantly high cytoplasmic expression of NF-κB in the B(a)P-induced group was seen, and this expression was prominently reduced in the TQ-treated group. Our results suggest that TQ can be used in the protection against benzopyrene-caused lung injury.  相似文献   
977.
    
Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 μm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.  相似文献   
978.
    
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   
979.
    
Recently, the development of nanocatalysts based on naturally occurring polysaccharides has received a lot of attention. Chitosan (CS), as a biodegradable and biocompatible polysaccharide, is considered to be an excellent template for the design of a hybrid biopolymer-based metal oxide nanocomposite. In this case, lanthanum oxide nanoparticles doped with chitosan at different weight percentages (5, 10, 15, and 20 wt% CS/La2O3) were prepared via a simple solution casting method. The prepared CS/La2O3 nanocomposite solutions were cast in a Petri dish in order to produce the developed catalyst, which was shaped as a thin film. The structural features of the hybrid nanocomposite film were studied by FTIR, SEM, and XRD analytical tools. FTIR spectra confirmed the presence of the major characteristic peaks of chitosan, which were modified by interaction with La2O3 nanoparticles. Additionally, SEM graphs showed dramatic morphological changes on the surface of chitosan, which is attributed to surface adsorption with La2O3 molecules. The prepared CS/La2O3 nanocomposite film (15% by weight) was investigated as an effective, recyclable, and heterogeneous base catalyst in the synthesis of pyridines and pyrazoles. The nanocomposite used was sufficiently stable and was collected and reused more than three times without loss of catalytic activity.  相似文献   
980.
    
Psophocarpus tetragonolobus has long been used in traditional medicine and cuisine. In this study, Psophocarpus tetragonolobus extracts were isolated by maceration and ultrasound-assisted extraction and were evaluated for their antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The obtained results show that both extracts (maceration and ultrasound) were rich in bioactive molecules and exerted substantial antioxidant and anti-inflammatory effects. The P. tetragonolobus extracts’ treatment in LPS-stimulated RAW264.7 macrophages resulted in a significant downregulation of the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β mRNA. In addition, the P. tetragonolobus extracts’ treatment attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. Our observations indicate that there is no significant difference between the two studied extracts of P. tetragonolobus in terms of biological properties (specifically, antioxidant and anti-inflammatory effects. Regardless of the extraction method, P. tetragonolobus could be used for treating diseases related to oxidative stress and inflammatory reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号