首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   11篇
化学   314篇
晶体学   2篇
力学   2篇
数学   2篇
物理学   64篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   21篇
  2011年   19篇
  2010年   17篇
  2009年   15篇
  2008年   30篇
  2007年   29篇
  2006年   30篇
  2005年   27篇
  2004年   13篇
  2003年   12篇
  2002年   14篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
361.
Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar K(d), the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins.  相似文献   
362.
363.
We have synthesized calcium carbonate nanoparticles (Ca-NPs) in the cavity of a cage-shaped protein, apoferritin, by regulating the electrostatic potential of the molecule. The electrostatic potential in the cavity was controlled by pH changes resulting from changes in the dissolved carbon dioxide (CO(2)) concentration in the reaction solution. Recombinant L-apoferritin was mixed with a suspension of calcium carbonate (CaCO(3)), and the mixture was pressurized with gaseous CO(2) at 2 MPa. The pH of the solution decreased from 9.3 to 4.4; the CaCO(3) dissolved during pressurization, and then precipitated after the pressure was reduced to ambient. After repeating the pressurization/depressurization process three times, about 70% of the apoferritin molecules were found to contain nanoparticles with an average diameter of 5.8 ± 1.2 nm in their cavity. Energy-dispersive X-ray spectroscopy and electron diffraction analysis showed that the nanoparticles were calcite, one of the most stable crystal forms of CaCO(3). Electrostatic potential calculations revealed a transition in the potential in the apoferritin cavity, from negative to positive, below pH 4.4. The electrostatic potential change because of the change in pH was crucial for ion accumulation. Since the Ca-NPs synthesized by this method were coated with a protein shell, the particles were stably dispersed in solution and did not form aggregates. These Ca-NPs may be useful for medical applications such as synthetic bone scaffolds.  相似文献   
364.
The left-handed isomer of the helical complex [LZn(3)La(OAc)(3)] was spontaneously enriched from 50 : 50 to 87 : 13 when the quasiracemate crystals were dissolved. The invertible helicity of [LZn(3)La(OAc)(3)] (global chirality) helps the quasiracemate formation and the fixed point chirality of the R,R-cyclohexanediamine moiety (local chirality) effectively controls the global chirality in solution.  相似文献   
365.
We report the luminescent color tuning of a new complex, 2‐benzothiophenyl(4‐methoxyphenyl isocyanide)gold(I) ( 1 ), by using a new “polymorph doping” approach. The slow crystallization of the complex 1 afforded three different pure polymorphic crystals with blue, green, and orange emission under UV‐light irradiation. The crystal structures of pure polymorphs of 1 were investigated in detail by means of single‐crystal X‐ray analyses. Theoretical calculations based on the single‐crystal structures provided qualitative explanation of the difference in the excited energy‐levels of the three polymorphs of 1 . In sharp contrast, the rapid precipitation of 1 , with the optimized conditions reproducibly afforded homogeneous powder materials showing solid‐state white‐emission with Commission Internationale de l’Éclairage (CIE) 1931 chromaticity coordinates of (0.33, 0.35), which is similar to pure white. New “polymorphic doping” has been revealed to be critical to this white emission through spectroscopic and X‐ray diffraction analyses. The coexistence of the multiple polymorphs of 1 within the homogeneous powder materials and the ideal mixing of multiple luminescent colors gave its white emission accompanied with energy transfer from the predominant green‐emitting polymorph to the minor orange‐emitting polymorph.  相似文献   
366.
The structure of a nickel complex of imidazoline–aminophenol (IAP) prepared from IAP with Ni(OAc)2 was elucidated as cis‐bis(imidazolineaminophenoxide) [Ni(IAP)2]. The [Ni(IAP)2] complex smoothly promoted catalytic asymmetric 1,4‐addition of 3′‐indolyl‐3‐oxindole to nitroethylene to provide chiral mixed 3,3′‐bisindoles with high enantioselectivities. Mechanistic studies using ESI‐MS analyses suggest that one IAP ligand dissociated from [Ni(IAP)2] to generate the Ni–enolate of 3′‐indolyl‐3‐oxindole. From the optically active 3,3′‐mixed indole adduct, biologically important 3′‐indolyl‐3‐pyrrolidinoindoline was successfully synthesized in a three‐step reaction sequence.  相似文献   
367.
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly developed type of MALDI high-resolution time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the structural and compositional characterization of polymers. To create a graphical distribution of polymer components on a two-dimensional plot converted from complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of the repeating units of a given polymer, components with common repeat units lined up in the horizontal direction on the KMD plot, whereas those components with different structures were shifted vertically. This combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene oxide)/poly(propylene oxide) block copolymers, and profiling of the end-group distribution of poly(ε-caprolactone)s synthesized under different conditions.
?  相似文献   
368.
The title molecule, C40H32O6, possesses crystallographically imposed twofold symmetry, with the central two C atoms of the naphthalene unit sited on the rotation axis. The two 4‐phenoxybenzoyl groups in the molecule are twisted away from the attached naphthalene unit, with a torsion angle of 66.76 (15)° between the naphthalene unit and the carbonyl group (C—C—C=O), and are oriented in mutually opposing directions (anti orientation). There is an apparent difference in the conformations of the 4‐phenoxybenzoyl groups at the 1‐ and 8‐positions of the naphthalene ring between the title molecule and its methoxy‐bearing homologue [Hijikata et al. (2010). Acta Cryst. E 66 , o2902–o2903]. Whilst the 4‐phenoxybenzoyl groups in 2,7‐diisopropoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene [Yoshiwaka et al. (2013). Acta Cryst. E 69 , o242] are situated in the same anti orientation as the title molecule, those of 2,7‐dimethoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene are oriented in the same direction with respect to the naphthalene ring system, i.e. in a syn orientation.  相似文献   
369.
Previously, we reported an interesting reaction by which esculeogenin A [(5alpha,22S,23S,25S)-3beta,23,27-trihydroxyspirosolane], a sapogenol of tomato-saponin, esculeoside A, was easily converted into a pregnane derivative, 5alpha-pregn-16-en-3beta-ol-20-one, merely by refluxing with pyridine and water. Its chemical mechanism including air oxidation is here described.  相似文献   
370.
In order to develop a high-throughput assay for nitric oxide metabolites, nitrite (NO2-) and nitrate (NO3-), in biological fluids, we have investigated the simultaneous determination of them using an electrophoretic lab-on-a-chip (microchip capillary electrophoresis, MCE) technique. In this study, in order to establish an MCE assay process without deproteinization, the addition of a zwitterionic additive into the running buffer to reduce the adsorption of protein onto the surface of channel was investigated. Initially, some zwitterionic additives were investigated by making a comparison of relative standard deviations (RSDs) of the migration times for NO2(-) and NO3(-) on capillary electrophoresis. From the results of our comparison of the RSD values, 2% (w/w) N-cyclohexyl-2-aminoethanesulfonic acid (CHES) was selected. As a result of the application of the running buffer with CHES to the MCE process, the complete separation of NO2(-) and NO3(-) in human plasma without deproteinization was achieved within 1 min. Since the RSD values of the positions of the peaks were less than 2.3%, beneficial reduction effects on MCE were suggested. When we used an internal standard method in order to correct the injection volume, the RSDs of the peak heights and areas were less than 10%, and the correlation coefficients of spiked calibration curves ranging from 0 to 350 microM were 0.999 and 0.997 for NO2(-) and NO3(-), respectively. The limits of detection (S/N=3) were 53 microM for NO2(-) and 41 microM for NO3(-). Moreover, the correlation coefficients in excess of 0.99 between the MCE method and a conventional Griess method were achieved for both NO2(-) and NO3(-). Consequently, the possibility of establishing a high-throughput assay process was obtained by utilizing 2% (w/w) CHES to reduce protein adsorption.  相似文献   
[首页] « 上一页 [30] [31] [32] [33] [34] [35] [36] 37 [38] [39] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号