首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   17篇
化学   149篇
晶体学   3篇
力学   9篇
数学   8篇
物理学   42篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   17篇
  2011年   15篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   18篇
  2006年   10篇
  2005年   14篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1988年   1篇
  1984年   5篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有211条查询结果,搜索用时 125 毫秒
181.
Single crystal X-ray diffraction studies on the water soluble, synthetic tetrapeptide Tyr(1)-Aib(2)-Tyr(3)-Val(4) with a non-coded amino acid residue (Aib: [small alpha]-amino isobutyric acid) reveal that the peptide adopts an "S"-shaped molecular structure which self-assembles to form a supramolecular triple helix using various non-covalent interactions including water mediated hydrogen bonds in the solid state.  相似文献   
182.
A method has been developed for the substoichiometric determination of mercury by thermal neutron activation analysis, based on the selective extraction of the Hg(II)—Bindschedler's Green complex into 1,2-dichloroethane. The method has been applied for the determination of trace amounts of mercury in geological standards such as W-1, GR, Sye-1, and T-1, meteorite Allende de Publito, and biological materials such as kale, IR1 standard tobacco, and human blood serum.  相似文献   
183.
Three terminally protected short peptides Bis[Boc-D-Leu1-Cys2-OMe] 1, Bis[Boc-Leu1-Cys2-OMe] and Bis[Boc-Val1-Cys2-OMe] 3 exhibit amyloid-like fibrillar morphology. Single crystal X-ray diffraction analysis of peptide 1 clearly demonstrates that it adopts an overall extended backbone molecular conformation that self-assembles to form an intermolecular hydrogen-bonded antiparallel supramolecular beta-sheet structure in crystals. Scanning electron microscopic (SEM) images, transmission electron microscopic (TEM) images and Congo red binding studies vividly demonstrate the amyloid-like fibril formation of peptides 1, 2 and 3. However, after reduction of the disulfide bridge of peptides 1, 2 and 3, three newly generated peptides Boc-D-Leu1-Cys2-OMe 4, Boc-Leu1-Cys2-OMe 5 and Boc-Val1-Cys2-OMe 6 are formed and all of them failed to form any kind of fibril under the same conditions, indicating the important role of the disulfide bond in amyloid-like fibrillogenesis in a peptide model system.  相似文献   
184.
Interaction of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), a biologically active molecule, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA) have been studied using steady state and picosecond time-resolved fluorescence and fluorescence anisotropy. The polarity dependent intramolecular charge transfer (ICT) process is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. The CT fluorescence exhibits appreciable hypsochromic shift along with an enhancement in the fluorescence yield, fluorescence anisotropy (r) and fluorescence lifetime upon binding with the proteins. The reduction in the rate of ICT within the hydrophobic interior of albumins leads to an increase in the fluorescence yield and lifetime. Marked increase in the fluorescence anisotropy indicates that the probe molecule is located in a motionally constrained environment within the proteins. Micropolarities in the two proteinous environments have been determined following the polarity sensitivity of the CT emission. Addition of urea to the protein-bound systems leads to a reduction in the fluorescence anisotropy indicating the denaturation of the proteins. Polarity measurements and fluorescence resonance energy transfer (FRET) studies throw light in assessing the location of the fluorophore within the two proteinous media.  相似文献   
185.
Helices and sheets are ubiquitous in nature. However, there are also some examples of self-assembling molecules forming supramolecular helices and sheets in unnatural systems. Unlike supramolecular sheets there are a very few examples of peptide sub-units that can be used to construct supramolecular helical architectures using the backbone hydrogen bonding functionalities of peptides. In this report we describe the design and synthesis of two single turn/bend forming peptides (Boc-Phe-Aib-Ile-OMe 1 and Boc-Ala-Leu-Aib-OMe 2) (Aib: α-aminoisobutyric acid) and a series of double-turn forming peptides (Boc-Phe-Aib-Ile-Aib-OMe 3, Boc-Leu-Aib-Gly-Aib-OMe 4 and Boc-γ-Abu-Aib-Leu-Aib-OMe 5) (γ-Abu: γ-aminobutyric acid). It has been found that, in crystals, on self-assembly, single turn/bend forming peptides form either a supramolecular sheet (peptide 1) or a supramolecular helix (peptide 2), unlike self-associating double turn forming peptides, which have only the option of forming supramolecular helical assemblages.  相似文献   
186.
Ligands with the capability to bind G-quadruplexes (G4s) specifically, and to control G4 structure and behaviour, offer great potential in the development of novel therapies, technologies and functional materials. Most known ligands bind to a pre-formed topology, but G4s are highly dynamic and a small number of ligands have been discovered that influence these folding equilibria. Such ligands may be useful as probes to understand the dynamic nature of G4 in vivo, or to exploit the polymorphism of G4 in the development of molecular devices. To date, these fascinating molecules have been discovered serendipitously. There is a need for tools to predict such effects to drive ligand design and development, and for molecular-level understanding of ligand binding mechanisms and associated topological perturbation of G4 structures. Here we study the G4 binding mechanisms of a family of stiff-stilbene G4 ligands to human telomeric DNA using molecular dynamics (MD) and enhanced sampling (metadynamics) MD simulations. The simulations predict a variety of binding mechanisms and effects on G4 structure for the different ligands in the series. In parallel, we characterize the binding of the ligands to the G4 target experimentally using NMR and CD spectroscopy. The results show good agreement between the simulated and experimentally observed binding modes, binding affinities and ligand-induced perturbation of the G4 structure. The simulations correctly predict ligands that perturb G4 topology. Metadynamics simulations are shown to be a powerful tool to aid development of molecules to influence G4 structure, both in interpreting experiments and to help in the design of these chemotypes.

Enhanced sampling molecular dynamics simulations and solution-phase experiments come together to demonstrate the diverse effects of G4-interactive small molecules.  相似文献   
187.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups.  相似文献   
188.
A terminally protected acyclic tetrapeptide Boc-Aib-Val-Aib-beta-Ala-OMe 1 (Aib: alpha-aminoisobutyric acid, beta-Ala: beta-Alanine) self-assembles into a continuous hydrogen-bonded supramolecular helix with an average diameter of 10 A (1 nm) starting from a double bend molecular conformation in crystals and further self-assembly of this supramolecular architecture leads to the formation of polydisperse nanorods of diameters 10-40 nm.  相似文献   
189.
Ray S  Haldar D  Drew MG  Banerjee A 《Organic letters》2004,6(24):4463-4465
Terminally protected acyclic tripeptides Boc-Tyr(1)-Val(2)-Tyr(3)-OMe 1 and Boc-Tyr(1)-Ile(2)-Tyr(3)-OMe 2 self-assemble into nanotubes in crystals through various noncovalent interactions with an average internal diameter of 5 A (0.5 nm), and the tubular ensemble is developed through the hydrogen-bonded side chains of tyrosine residues. The inside of the hollow nanotubular structures is hydrophilic; however, no solvent molecules have been crystallographically detected. [structure: see text]  相似文献   
190.
A critical analysis of single crystal X-ray diffraction studies on a series of terminally protected tripeptides containing a centrally positioned Aib (α-aminoisobutyric acid) residue has been reported. For the tripeptide series containing Boc-Ala-Aib as corner residues, all the reported peptides formed distorted type II β-turn structures. Moreover, a series of Phe substituted analogues (tripeptides with Boc-Phe-Aib) have also shown different β-turn conformations. However, the Leu-modified analogues (tripeptides with Boc-Leu-Aib) disrupt the concept of β-turn formation and adopt various conformations in the solid state. X-ray crystallography sheds some light on the conformational heterogeneity at atomic resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号