首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   17篇
化学   149篇
晶体学   3篇
力学   9篇
数学   8篇
物理学   42篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   17篇
  2011年   15篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   18篇
  2006年   10篇
  2005年   14篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1988年   1篇
  1984年   5篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有211条查询结果,搜索用时 203 毫秒
11.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   
12.
13.
In this present investigation, we describe the steady state current voltage (I–V) characteristic of Crystal violet dye dispersed solid state photoelectrochemical cell (PEC). Typical behavior of dark current-voltage characteristic by increasing and decreasing external bias voltage has a similar form like hysterisis in nature. Although we have already observed this hysterisis nature in case of both forward and reverse bias condition, yet it is clear that the reverse hysterisis curve is more prominent than forward hysterisis. In this paper, we are getting double values of current (I) for a single value voltage, which is also helpful to understand the charge transport process through disordered materials. As the bias increases, the distribution of traps depth, which is exponential in nature, changes toward order state (resulting increase in disordered parameter α) This means that as α increases, it tends to reach the most order state of material. When external bias voltage is at 3.5 V, the value of disorder parameter becomes 1, and when bias voltage is beyond 3.5 V, the diffusion comes enhanced in nature.  相似文献   
14.
This paper presents an investigation of compound hadrons (pions and protons) distribution emitted from 24Mg-AgBr and 12C-AgBr interactions both at 4.5 AGeV and 32S-AgBr interactions at 200 AGeV. The study includes azimuthal correlations (two particle and three particle), azimuthal asymmetry and fractal behaviour. This paper reveals some interesting results.  相似文献   
15.
Resistance to glycopeptide antibiotics, the drugs of choice for life‐threatening bacterial infections, is on the rise. In order to counter the threat of glycopeptide‐resistant bacteria, we report development of a new class of semi‐synthetic glycopeptide antibiotics, which not only target the bacterial membrane but also display enhanced inhibition of cell‐wall biosynthesis through increased binding affinity to their target peptides. The combined effect of these two mechanisms resulted in improved in vitro activity of two to three orders of magnitude over vancomycin and no propensity to trigger drug resistance in bacteria. In murine model of kidney infection, the optimized compound was able to bring bacterial burden down by about 6 logs at 12 mg kg?1 with no observed toxicity. The results furnished in this report emphasize the potential of this class of compounds as future antibiotics for drug‐resistant Gram‐positive infections.  相似文献   
16.
Interpenetrating metal organic frameworks are interesting functional materials exhibiting exceptional framework properties. Uptake or exclusion of guest molecules can induce sliding in the framework making it porous or non‐porous. To understand this dynamic nature and how framework interaction changes during sliding, metal organic framework (MOF) 508 {Zn(BDC)( 4,4′‐Bipy)0.5 · DMF(H2O)0.5} was selected for study. We have investigated structural transformation in MOF‐508 under variable conditions of temperature, pressure and gas loading using Raman spectroscopy and substantiated it with IR studies and density functional theory (DFT) calculations. Conformational changes in the organic linkers leading to the sliding of the framework result in changes in Raman spectra. These changes in the organic linkers are measured as a function of high pressure and low temperature, suggesting that the dynamism in MOF‐508 framework is driven by ligand conformation change and inter‐linker interactions. The presence of Raman signatures of adsorbed CO2 and its librational mode at 149 cm−1 suggests cooperative adsorption of CO2 in the MOF‐508 framework, which is also confirmed from DFT calculations that give a binding energy of 34 kJ/mol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
17.
Recently, polymer drug conjugates (PDCs) have attracted considerable attention in the treatment of cancer. In this work, a simple strategy has been developed to make PDCs of an antitumor alkylating agent, chlorambucil, using a biocompatible disulphide linker. Chlorambucil‐based chain transfer agent was used to prepare various homopolymers and block copolymers in a controlled fashion via reversible addition–fragmentation chain transfer polymerization. Chlorambucil conjugated block copolymer, poly(polyethylene glycol monomethyl ether methacrylate)‐b‐poly(methyl methacrylate), formed nanoaggregates in aqueous solutions, which are characterized by dynamic light scattering and field emission‐scanning electron microscopy. Finally, the simplicity of the design is exemplified by performing a release study of chlorambucil under reducing condition by using D,L‐dithiothreitol.

  相似文献   

18.
Fast polymerization of isobutylene (IB) initiated by tert‐butyl chloride using ethylaluminum dichloride·bis(2‐chloroethyl) ether complex (T. Rajasekhar, J. Emert, R. Faust, Polym. Chem. 2017, 8, 2852) was drastically slowed down in the presence of impurities, such as propionic acid, acetone, methanol, and acetonitrile. The effect of impurities on the polymerization rate was neutralized by using two different approaches. First, addition of a small amount of iron trichloride (FeCl3) scavenged the impurity and formed an insoluble · impurity complex in hexanes. The polymerization rate and exo‐olefin content were virtually identical to that obtained in the absence of impurities. Heterogeneous phase scavenger (FeCl3) exhibited better performance than homogenous phase scavengers. In the second approach, conducting the polymerization in wet hexanes, the fast polymerization of IB was retained in the presence of impurities with a slight decrease in exo‐olefin content. 1H NMR studies suggest that nucleophilic impurities are protonated in the presence of water, and thereby neutralized. Mechanistic studies suggest that the rate constant of activation (ka), rate constant of propagation (kp), and rate constant of β‐proton elimination (ktr) are not affected by the presence of impurities. To account for the retardation of polymerization in the presence of impurities, delay of proton transfer to monomer in the chain transfer step is proposed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3697–3704  相似文献   
19.
Recently non-proportional deformation has received increased attention from researchers working in the area of experimental and computational modeling of metal deformation. However, most of them are numerical in nature with limited experimental data available, making it further difficult to model non-proportional deformation. In the present work, two-stage uniaxial tests, along with uniaxial cyclic and biaxial tests for different stress ratios, have been performed to evaluate deformation behavior of ultra-low carbon high strength automotive steel. Behaviors like cross-effect and hardening stagnation, which are attributed to the evolution of complex dislocation structures, were observed in this steel. It was also noticed that this steel exhibits tension-compression asymmetry. As for constitutive modeling, a modified asymmetric yield function is proposed to be used with a combined isotropic-kinematic hardening model. Also methods to account for the hardening stagnation during reverse loading and the cross-effect during two-stage deformation are proposed. The resulting constitutive model showed reasonably good agreement with experimental results.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号