首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6235篇
  免费   201篇
  国内免费   15篇
化学   4895篇
晶体学   70篇
力学   58篇
数学   314篇
物理学   1114篇
  2023年   36篇
  2022年   32篇
  2021年   64篇
  2020年   104篇
  2019年   93篇
  2018年   75篇
  2017年   48篇
  2016年   129篇
  2015年   103篇
  2014年   160篇
  2013年   288篇
  2012年   323篇
  2011年   441篇
  2010年   192篇
  2009年   208篇
  2008年   368篇
  2007年   369篇
  2006年   366篇
  2005年   394篇
  2004年   322篇
  2003年   256篇
  2002年   267篇
  2001年   153篇
  2000年   169篇
  1999年   67篇
  1998年   64篇
  1997年   56篇
  1996年   84篇
  1995年   48篇
  1994年   65篇
  1993年   47篇
  1992年   65篇
  1991年   53篇
  1990年   51篇
  1989年   46篇
  1988年   57篇
  1987年   46篇
  1986年   62篇
  1985年   68篇
  1984年   71篇
  1983年   46篇
  1982年   52篇
  1981年   43篇
  1980年   47篇
  1979年   42篇
  1978年   36篇
  1977年   33篇
  1976年   25篇
  1975年   40篇
  1974年   32篇
排序方式: 共有6451条查询结果,搜索用时 15 毫秒
951.
The “topological polymer chemistry” of amphiphilic linear and cyclic block copolymers at an air/water interface was investigated. A cyclic copolymer and two linear copolymers (AB‐type diblock and ABA‐type triblock copolymers) synthesized from the same monomers were used in this study. Relatively stable monolayers of these three copolymers were observed to form at an air/water interface. Similar condensed‐phase temperature‐dependent behaviors were observed in surface pressure–area isotherms for these three monolayers. Molecular orientations at the air/water interface for the two linear block copolymers were similar to that of the cyclic block copolymer. Atomic force microscopic observations of transferred films for the three polymer types revealed the formation of monolayers with very similar morphologies at the mesoscopic scale at room temperature and constant compression speed. ABA‐type triblock linear copolymers adopted a fiber‐like surface morphology via two‐dimensional crystallization at low compression speeds. In contrast, the cyclic block copolymer formed a shapeless domain. Temperature‐controlled out‐of‐plane X‐ray diffraction (XRD) analysis of Langmuir–Blodgett (LB) films fabricated from both amphiphilic linear and cyclic block copolymers was performed to estimate the layer regularity at higher temperatures. Excellent heat‐resistant properties of organized molecular films created from the cyclic copolymer were confirmed. Both copolymer types showed clear diffraction peaks at room temperature, indicating the formation of highly ordered layer structures. However, the layer structures of the linear copolymers gradually disordered when heated. Conversely, the regularity of cyclic copolymer LB multilayers did not change with heating up to 50 °C. Higher‐order reflections (d002, d003) in the XRD patterns were also unchanged, indicative of a highly ordered structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 486–498  相似文献   
952.

Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.

Graphical Abstract
  相似文献   
953.
954.
955.
The growth mechanism of liquid phase epitaxial layers of Ga1?xAlxAs on preferentially etched GaAs substrates has been investigated. It has been found that enhanced diffusion of As atoms due to a local concentration gradient, which is set up by non-uniform growth at channels, plays a critical role in determining the growth morphology. The relation between growth morphology and growth conditions is discussed by using a simple growth model.  相似文献   
956.
Production of functional carotenoids using microalgae may facilitate the commercialization of anti-aging nutritional supplements. The green alga Chlamydomonas reinhardtii uses a non-mevalonate (MEP) pathway for isopentenyl diphosphate (IPP) synthesis. Two enzymes thought to play important roles in this MEP pathway to IPP synthesis are 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and reductase (DXR). DnaJ-like chaperone (Orange protein) is thought to support phytoene synthase, a key enzyme in plant carotenoid synthesis. Genes for Orange (OR), DXS, and DXR were overexpressed via nuclear transformation into C. reinhardtii. CDS of OR, DXS, and DXR were amplified and connected with dual promoters of heat-shock protein 70A and ribulose bisphosphate carboxylase small chain 2. Compared with the parental strain, transformant CrOR#2 produced increased lutein and β-carotene (1.9-fold and 1.7-fold per cell, respectively). Transformant CrDXS#1 produced lutein and β-carotene at lower per-cell abundances than those for the parental strain. CrDXR#2 transformant produced lutein and β-carotene at higher per-cell abundances than their parental counterpart; however, these transformants produced lutein and β-carotene at lower per-medium abundances than their parental counterparts. These results suggest that OR protein supports phytoene synthase in C. reinhardtii and that the phytoene synthesis step is rate-limiting in carotenoid synthesis.  相似文献   
957.
Aromatic amides bearing 2-azulenyl group on the amide nitrogen were synthesized and their structures were investigated. The π-electron density of the N-aryl group was found to influence the cis-trans conformational preferences of these compounds in solution. X-ray crystallography revealed that the plane of the 2-azulenyl ring has a strong tendency to lie coplanar with the amide plane when the azulene group is located on the same side as the amide oxygen atom.  相似文献   
958.
Metal cluster compounds are expected to be catalysts for new reactions because of synergistic effect of the metal atoms. In solid-state halide clusters and sulfide clusters, metal cluster frameworks are linked in two- or three-dimensions to form a cluster network. Halogen- or sulfur-deficient metal sites in an octahedral metal cluster framework are retained intact and act as catalytically active sites even at high temperatures of 400–700?°C. This review reports recent advances in the development of coordinatively unsaturated metal atoms on solid-state clusters with an octahedral metal framework and their application to organic catalytic reactions.  相似文献   
959.
The first catalytic enantioselective γ‐boryl substitution of CF3‐substituted alkenes is reported. A series of CF3‐substituted alkenes was treated with a diboron reagent in the presence of a copper(I)/Josiphos catalyst to afford the corresponding optically active γ,γ‐gem‐difluoroallylboronates in high enantioselectivity. The thus obtained products could be readily converted into the corresponding difluoromethylene‐containing homoallylic alcohols using highly stereospecific allylation reactions.  相似文献   
960.
Heavy chemical doping and high electrical conductivity are two key factors for metal‐free graphene electrocatalysts to realize superior catalytic performance toward hydrogen evolution. However, heavy chemical doping usually leads to the reduction of electrical conductivity because the catalytically active dopants give rise to additional electron scattering and hence increased electrical resistance. A hierarchical nanoporous graphene, which is comprised of heavily chemical doped domains and a highly conductive pure graphene substrate, is reported. The hierarchical nanoporous graphene can host a remarkably high concentration of N and S dopants up to 9.0 at % without sacrificing the excellent electrical conductivity of graphene. The combination of heavy chemical doping and high conductivity results in high catalytic activity toward electrochemical hydrogen production. This study has an important implication in developing multi‐functional electrocatalysts by 3D nanoarchitecture design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号