首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1251篇
  免费   34篇
  国内免费   3篇
化学   849篇
晶体学   21篇
力学   14篇
数学   118篇
物理学   286篇
  2022年   12篇
  2021年   16篇
  2020年   7篇
  2019年   23篇
  2018年   15篇
  2017年   14篇
  2016年   23篇
  2015年   27篇
  2014年   15篇
  2013年   58篇
  2012年   69篇
  2011年   59篇
  2010年   52篇
  2009年   62篇
  2008年   79篇
  2007年   85篇
  2006年   74篇
  2005年   72篇
  2004年   53篇
  2003年   69篇
  2002年   44篇
  2001年   16篇
  2000年   16篇
  1999年   21篇
  1998年   23篇
  1997年   14篇
  1996年   20篇
  1995年   11篇
  1994年   24篇
  1993年   15篇
  1992年   17篇
  1991年   12篇
  1990年   7篇
  1989年   7篇
  1988年   14篇
  1987年   8篇
  1986年   14篇
  1985年   11篇
  1984年   18篇
  1983年   4篇
  1982年   10篇
  1981年   13篇
  1980年   9篇
  1979年   10篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1288条查询结果,搜索用时 265 毫秒
61.
Although phase‐transfer reactions catalyzed by using quaternary ammonium salts are generally believed to require base additives, we discovered that, even without any base additives, conjugate additions of 3‐substituted oxindoles to nitroolefins proceeded smoothly in the presence of lipophilic quaternary ammonium bromide under water–organic biphasic conditions. The mechanism of this novel base‐free neutral phase‐transfer reaction system is investigated and the assumed catalytic cycle is presented together with interesting effects of water and lipophilicity of the phase‐transfer catalyst. The base‐free neutral phase‐transfer reaction system can be applied to highly enantioselective conjugate addition and aldol reactions under the influence of chiral bifunctional ammonium bromides as key catalysts. The structure of the chiral ammonium enolate intermediate is discussed based on the single‐crystal X‐ray structures of relevant ammonium salts and the importance of bifunctional design of catalyst is clearly explained in the model of intermediate.  相似文献   
62.
Cellulose - Given that terahertz (THz) radiation responds to intermolecular forces such as hydrogen bonds, THz time-domain spectroscopy (THz-TDS) has expanded possibilities in cellulose research....  相似文献   
63.
A new O‐benzylating reagent, that is, 4‐(4,6‐diphenoxy‐1,3,5‐triazin‐2‐yl)‐4‐benzylmorpholinium trifluoromethanesulfonate (DPT‐BM), has been developed. Benzyl cation equivalents are generated from DPT‐BM by dissolving the compound in a solvent at room temperature under non‐acidic conditions. The benzylation of various alcohols by using a combination of DPT‐BM and magnesium oxide provided the benzyl ethers in good yields.  相似文献   
64.
An organic–inorganic hybrid was prepared by simply mixing a fullerene derivative with polymethoxysiloxane. First, C60 was subjected to a radical addition reaction with 4,4′-azobis(4-cyanovaleric acid) to provide a C60 derivative. Polymethoxysiloxane was prepared by a controlled hydrolytic condensation of tetramethoxysilane. These two compounds were mixed and heated to provide hybrid bulk body. The hybrid bulk body showed high mechanical strength and elastic modulus compared with polymethoxysiloxane or the C60/polymethoxysiloxane hybrid. The formation of a dense siloxane network was established by a homogeneous mixing of the C60 derivative with polymethoxysiloxane.  相似文献   
65.
Eight novel octakis(3,4-dialkoxyphenyl)- phthalocyanine derivatives, Cn-M (2, M=2H; 3, M=Ni; 4, M=Cu; a, decyloxy; b, undecyloxy; c, dodecyloxy), have been synthesized and characterized. It was found that each of the derivatives exhibits discotic liquid crystalline properties, and that each of the Cn–Cu (4) derivatives has two kinds of Drd2( P 21/ a ) mesophases. These Cn–Cu (4a,b,c) and C12–2H (2c) derivatives exhibit a unique double clearing behavior.  相似文献   
66.
67.
68.
The focus of this article is the self-organization of neural systems under constraints. In 2016, we proposed a theory for self-organization with constraints to clarify the neural mechanism of functional differentiation. As a typical application of the theory, we developed evolutionary reservoir computers that exhibit functional differentiation of neurons. Regarding the self-organized structure of neural systems, Warren McCulloch described the neural networks of the brain as being “heterarchical”, rather than hierarchical, in structure. Unlike the fixed boundary conditions in conventional self-organization theory, where stationary phenomena are the target for study, the neural networks of the brain change their functional structure via synaptic learning and neural differentiation to exhibit specific functions, thereby adapting to nonstationary environmental changes. Thus, the neural network structure is altered dynamically among possible network structures. We refer to such changes as a dynamic heterarchy. Through the dynamic changes of the network structure under constraints, such as physical, chemical, and informational factors, which act on the whole system, neural systems realize functional differentiation or functional parcellation. Based on the computation results of our model for functional differentiation, we propose hypotheses on the neuronal mechanism of functional differentiation. Finally, using the Kolmogorov–Arnold–Sprecher superposition theorem, which can be realized by a layered deep neural network, we propose a possible scenario of functional (including cell) differentiation.  相似文献   
69.
70.
It was found that the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes were affected by various post-calcination treatments, for example, calcination in NH3 or under vacuum. Post-calcination treatment in NH3 at 773 K was particularly effective in increasing the photoelectrochemical performance and photocatalytic activity of rod-type TiO2 electrodes. A unique photoelectrochemical circuit was constructed by connecting a rod-type TiO2 electrode to a Pt electrode through a silicon solar cell in which the negative bias was applied on the rod-type TiO2 electrode. It was found that the photoelectrochemical circuit can effectively oxidize ethanethiol in water into CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号