We assume that both the concurrence Cr of a two-rebits state and the concurrence Cq of the usual two-qubits states are represented by hermitian operators (observables). We calculate the respective uncertainty ΔCr and the uncertainty ΔCq measured both as the standard deviation . We make the strictly mathematical assumption that there exists a canonical conjugate variable (called ξ) to the concurrence (C) such that both quantities satisfy a Robertson’s [1] uncertainty inequality of the form \( {\left(\Delta A\right)}^2{\left(\Delta B\right)}^2>{\left|\frac{1}{2}\left\langle \right[A,B\left]\right\rangle \right|}^2 \). From such inequality we impose bounds for both uncertainties Δξr and Δξq.
The reactivity of amidinatotetrylenes of the type E(tBu2bzm)R1 (E=Si, Ge; tBu2bzm=N,N′-bis(tertbutyl)benzamidinate; R1=alkyl or aryl) with the chromium Fischer alkynylcarbene complexes [Cr{C(OEt)C2R2}(CO)5] (R2=Ph; ferrocenyl, Fc) has been studied. At room temperature, two different reaction pathways have been identified: (a) attack of the amidinatotetrylene to the alkynyl C2 atom (γ-attack), which leads to σ-allenyl complexes in which the original Ccarbene atom maintains its attachment to the Cr(CO)5 and OEt groups (compounds 3 ), and (b) attack of the amidinatotetrylene to the Ccarbene atom (α-attack), which ends in σ-allenyl complexes in which the original Ccarbene atom is not attached to the metal atom and has been inserted into an E−N bond of the amidinatotetrylene forming an E-C-N-C-N five-membered ring (compounds 4 ). It has been found that compounds 3 are thermodynamically less stable than their corresponding 4 isomers and that some of the former (E=Ge; R1=CH2SiMe3) can be transformed into the latter upon heating. At high temperatures (>70 °C) the reactions involving bulky amidinatotetrylenes (R1=Mes, tBu) end in the carbene-substitution products [Cr{E(tBu2bzm)R1}(CO)5]. 相似文献
The structure and stability of adenine crystals and thin layers has been studied by using scanning tunneling microscopy, X‐ray diffraction, and density functional theory calculations. We have found that adenine crystals can be grown in two phases that are energetically quasi‐degenerate, the structure of which can be described as a pile‐up of 2D adenine planes. In each plane, the structure can be described as an aggregation of adenine dimers. Under certain conditions, kinetic effects can favor the growth of the less stable phase. These results have been used to understand the growth of adenine thin films on gold under ultra‐high vacuum conditions. We have found that the grown phase corresponds to the α‐phase, which is composed of stacked prochiral planes. In this way, the adenine nanocrystals exhibit a surface that is enantiopure. These results could open new insight into the applications of adenine in biological, medical, and enantioselective or pharmaceutical fields. 相似文献
We present an achiral diacrylate that shows a phase transition from the synclinic smectic C phase (SmC) to the anticlinic smectic C (SmCalt). This last phase has been previously reported only for swallow-tailed or dimeric compounds. Our studies using differential scanning calorimetry, X-ray diffraction, polarizing optical microscopy and broad band dielectric spectroscopy suggest the existence of this mesophase in this bifunctional smectogen. 相似文献
A solid phase extraction (SPE) technique for seawater samples coupled to quantification using liquid chromatography tandem-mass spectrometry (LC-MS/MS) is described to quantify relevant antifouling booster biocides of ecotoxicological concern (Diuron, TCMTB, Irgarol 1051 and Dichlofluanid). The optimised methodology provides a sensitive, easy to use and efficient analytical procedure with detection limits in the range of between 0.1 and 0.2?ng?L?1 and appropriate reproducibility (with analytical standard deviations of less than 10%). Spiked recoveries for all compounds exceeded 72%. The method was tested through a thorough monitoring regime of commercial port and marinas on the island of Gran Canaria (off the north-west coast of Africa) over a period of several months in 2008. Results provide the first data for antifouling booster biocides in the Canary Islands. Concentrations of Diuron and Irgarol 1051 in samples ranged between 2 and 195?ng?L?1 and 2 and 146?ng?L?1, respectively. TCMTB and Dichlofluanid were not detected. 相似文献
The cationic complex [(JohnPhos–Au)3(acetylide)][SbF6] (JohnPhos=(2-biphenyl)di-tert-butylphosphine, L1) has been characterised structurally and features an acetylide–trigold(I)–JohnPhos system; the trinuclear–acetylide unit, coordinated to the monodentate bulk phosphines, adopts an unprecedented μ,η1,η2,η1 coordination mode with an additional interaction between distal phenyl rings and gold centres. Other cationic σ,π-[(gold(I)L1)2] complexes have also been isolated. The reaction of trimethylsilylacetylene with various alcohols (iPrOH, nBuOH, n-HexOH) catalysed by cationic [AuIL1][SbF6] complexes in CH2Cl2 at 50 °C led to the formation of acetaldehyde acetals with a high degree of chemo- and regioselectivity. The reaction mechanism was studied, and several organic and inorganic intermediates have been characterised. A comparative study with the analogous cationic [CuIL1][PF6] complex revealed different behaviour; the copper metal is lost from the coordination sphere leading to the formation of cationic vinylphosphonium and copper nanoparticles. Additionally, a new catalytic approach for the formation of this high-value cationic vinylphosphonium has been established. 相似文献
In the literature, several definitions can be found for the thermal conductivity; however, many of them are not clearly explained. The easiest explanation is the following: the property of a material to conduct heat. It is evaluated primarily in terms of Fourier’s Law for heat conduction. Nowadays, the examination of the thermal conductivity of building materials is very important both for the manufacturers and for the consumers. Nonetheless in real, confusing definitions and interpretations can be found regarding the exact meaning of the thermal conductivity of the materials. In physics and in engineering practice, the following appellations are used as heat conductivity, thermal conduction coefficient, design and declared values of the thermal conductivities as well as the effective thermal conductivity. In this article we would give an overview about the correct explanations of the above-mentioned values. At first thermal conductivity measurements of four different types of expanded polystyrene materials (EPS, 80, 100, 150, 200) will be presented by using Holometrix Lambda 2000 type Heat Flow Meter after drying them in a Venticell 111 type laboratory oven to changeless mass.
Extensive research has been devoted to the chemical manipulation of carbon nanotubes. The attachment of molecular fragments through covalent‐bond formation produces kinetically stable products, but implies the saturation of some of the C? C double bonds of the nanotubes. Supramolecular modification maintains the structure of the SWNTs but yields labile species. Herein, we present a strategy for the synthesis of mechanically interlocked derivatives of SWNTs (MINTs). In the key rotaxane‐forming step, we employed macrocycle precursors equipped with two π‐extended tetrathiafulvalene SWNT recognition units and terminated with bisalkenes that were closed around the nanotubes through ring‐closing metathesis (RCM). The mechanically interlocked nature of the derivatives was probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Individual macrocycles were observed by HR STEM to circumscribe the nanotubes. 相似文献