首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   10篇
化学   115篇
晶体学   1篇
力学   1篇
数学   4篇
物理学   12篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   9篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   12篇
  2011年   10篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1905年   2篇
  1901年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
81.
The synthesis and crystal structure of the first ternary A-Cu-Sn intermetallic phases for the heavier alkali metals A = Na to Cs is reported. The title compounds A(12)Cu(12)Sn(21) show discrete 33-atom intermetalloid Cu-Sn clusters {Sn@Cu(12)@Sn(20)}, which are composed of {Sn(20)} pentagonal dodecahedra surrounding {Cu(12)} icosahedra with single Sn atoms at the center. Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21) were characterized by single-crystal XRD studies, and the successful synthesis of analogous A-Cu-Sn compounds with A = Rb and Cs is deduced from powder XRD data. The isotypic A(12)Cu(12)Sn(21) phases crystallize in the cubic space group Pn ?3m (No. 224), with the Cu-Sn clusters adopting a face centered cubic arrangement. A formal charge of 12- can be assigned to the {Sn@Cu(12)@Sn(20)} cluster unit, and the interpretation of the title compounds as salt-like intermetallic phases featuring discrete anionic intermetalloid [Sn@Cu(12)@Sn(20)](12-) clusters separated by alkali metal cations is supported by electronic structure calculations. For both Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21), DFT band structure calculations (TB-LMTO-ASA) reveal a band gap. The discrete [Sn@Cu(12)@Sn(20)](12-) cluster is analyzed in consideration of the molecular orbitals obtained from hybrid DFT calculations (Gaussian 09) for the cluster anion. The [Sn@Cu(12)@Sn(20)](12-) cluster MOs can be classified with labels indicating the numbers of radial and angular nodes, in the style of spherical shell models of cluster bonding.  相似文献   
82.
A multitasking C‐silylation strategy using the readily available compound 26 as a surrogate for cinnamic acid represents the key design element of a total synthesis of all known members of the ipomoeassin family of resin glyosides. This protecting group maneuver allows the unsaturated acids decorating the glucose subunit of the targets to be attached at an early phase of the synthesis, prevents their participation in the ruthenium‐catalyzed ring‐closing metathesis (RCM) used to form the macrocyclic ring, and protects them against reduction during the hydrogenation of the resulting cycloalkene over Wilkinson’s catalyst. As the C‐silyl group can be concomitantly removed with the O‐TBS substituent using tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) in acetonitrile, no separate protecting group manipulations were necessary in the final stages, thus contributing to a favorable overall “economy of steps”. In addition to the naturally occurring ipomoeassins, a small set of synthetic analogues has also been prepared by “diverted total synthesis”. The cytotoxicity of these compounds was assayed with two different cancer cell lines. The recorded data confirm previous findings that the acylation‐ and oxygenation pattern of these amphiphilic glycoconjugates is highly correlated with their biological activity profile. Ipomoeassin F turned out to be the most promising member of the series, showing IC50 values in the low nanomolar range.  相似文献   
83.
The synthesis of mimetic of the steroid saponins 1 and 2 was investigated. As a substitute for the complex 22-homo-23-nor-steroid moieties A and B in 1 and 2 diosgenin was introduced. The silyl protected thioorthoester 20 was successfully employed for glucosylation. After selective 2--deacetylation, the glucosylated diosgenyl acceptor 23 was rhamnosylated. The 4---methoxybenzoylated donor 12 gave only minor yields. By using the tri--benzoyl protected donor 15 the [small alpha]--rhamnopyranosyl-(1[rightward arrow]2)-[small beta]--glucopyranosyl-(1[rightward arrow]3[small beta])-diosgenin derivative 25 was obtained.  相似文献   
84.
Oxidation of the iron(II) precursor [(L1)FeIICl2], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (sPhIO) leads to the extremely reactive ferryl oxidant [(L1)(Cl)FeIV=O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non-heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C−H abstraction and the result of a rebound of the ensuing radical to an iron-bound Cl. The time-resolved formation of the halogenation product indicates that this primarily results from sPhIO oxidation of an initially formed oxido-bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1)FeIICl2] indicate a high complex stability of the bispidine-iron complexes. DFT analysis shows that, due to a large driving force and small triplet-quintet gap, [(L1)(Cl)FeIV=O]+ is the most reactive small-molecule halogenase model, that the FeIII/radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.  相似文献   
85.
The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIV=O(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, is known to have an S=1 electronic ground state and to be an extremely reactive oxidant for oxygen atom transfer (OAT) and hydrogen atom abstraction (HAA) processes. Here we show that, in spite of this ferryl oxidant having the “wrong” spin ground state, it is the most reactive nonheme iron model system known so far and of a similar order of reactivity as nonheme iron enzymes (C−H abstraction of cyclohexane, −90 °C (propionitrile), t1/2=3.5 sec). Discussed are spectroscopic and kinetic data, supported by a DFT-based theoretical analysis, which indicate that substrate oxidation is significantly faster than self-decay processes due to an intramolecular demethylation pathway and formation of an oxido-bridged diiron(III) intermediate. It is also shown that the iron(III)-chlorido-hydroxido/cyclohexyl radical intermediate, resulting from C−H abstraction, selectively produces chlorocyclohexane in a rebound process. However, the life-time of the intermediate is so long that other reaction channels (known as cage escape) become important, and much of the C−H abstraction therefore is unproductive. In bulk reactions at ambient temperature and at longer time scales, there is formation of significant amounts of oxidation product – selectively of chlorocyclohexane – and it is shown that this originates from oxidation of the oxido-bridged diiron(III) resting state.  相似文献   
86.
In a systematic investigation, the synthesis of metal–organic frameworks (MOFs) with MIL-140 structure was studied. The precursors of this family of MOFs are the same as for the formation of the well-known UiO-type MOFs although the synthesis temperature for MIL-140 is significantly higher. This study is focused on the formation of Zr-based MIL-140 MOFs with terephthalic acid (H2bdc), biphenyl-4,4′-dicarboxylic acid (H2bpdc), and 4,4′-stilbenedicarboxylic acid (H2sdc) and the introduction of synthesis field diagrams to discover parameters for phase-pure products. In this context, a MIL-140 network with H2sdc as linker molecule is first reported. Additionally, an important aspect is the reduction of the synthesis temperature to make MIL-140 MOFs more accessible even though linkers with a more delicate nature are used. The solvothermal syntheses were conducted in highly concentrated reaction mixtures whereby a targeted synthesis to yield the MIL-140 phase is possible. Furthermore, the effect of the often-used modulator approach is examined for these systems. Finally, the characteristics of the synthesized MOFs are compared with physisorption measurements, thermogravimetric analyses, and scanning electron microscopy.  相似文献   
87.
88.
89.
90.
Exposure of skin to ultraviolet (UV) radiation triggers oxidative stress in skin tissue that can lead to erythema, early skin aging or even cancer. It is suggested that oligomeric proanthocyanidins (OPCs), phytonutrients that belong to the polyphenol family have an anti-oxidant/anti-inflammatory activity on the skin. Measuring ultra-weak photon emission (UPE) is a non-invasive, fairly-sensitive and convenient technique for continuously monitoring oxidative stress. The present study was undertaken to confirm anti-oxidant activity of the specific OPCs cream formulation in human skin by measuring UPE of skin. In the present study 25 healthy female subjects participated. As a baseline measurement of skin, UPE was recorded from the dorsal surface of the subjects’ hands before (spontaneous UPE) and after exposure to UV (UV-induced UPE). The effects of the OPCs cream on spontaneous and UV-induced UPE were measured using a fractionated UV exposure protocol. UV exposure resulted in an increase in UPE from both hands. Repeat UV exposure also resulted in a long-term increase of spontaneous UPE. This is likely due to depletion of anti-oxidant capacity of skin resulting in sensitization of skin to UV. It was assessed by measuring spontaneous UPE at 80 min after each UV exposure. Application of the OPCs cream immediately after UV exposure resulted in a significant (approx. 30%) decrease in UV-induced UPE. Topical OPCs cream application also reduced sensitization of skin to UV following repeated UV exposure (i.e., reduced long-term increase in spontaneous UPE). This study indicates that the specific OPCs cream formulation significantly decreases UV-induced oxidative stress in human skin based on UPE measurement. It therefore suggests that regular use of this OPCs cream might protect skin from harmful effects of UV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号