首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   5篇
化学   95篇
数学   14篇
物理学   38篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1996年   3篇
  1993年   5篇
  1992年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   7篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1971年   1篇
  1969年   3篇
  1968年   3篇
  1965年   1篇
  1964年   2篇
  1958年   1篇
  1957年   2篇
  1956年   1篇
  1924年   1篇
  1920年   1篇
  1908年   2篇
  1903年   1篇
  1902年   2篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
21.
Effective exposure temperatures (Teff) in Arizona were calculated from hourly or 10-min parsed irradiation data along with ambient, black panel, and sample temperatures. The Teff represents a constant temperature that creates the same amount of photodegradation as the naturally varying temperature and provides a benchmark temperature for making lifetime predictions from accelerated laboratory exposures. The annual ambient and black panel Teff at a Wittmann, Arizona site were 30 °C and 42 °C, respectively, assuming that the photodegradation has an activation energy (Ea) of 21 kJ/mol (5 kcal/mol). Teff was only weakly dependent on Ea over the range of 10-40 kJ/mol (3-10 kcal/mol). Samples exposed as van sunroofs were found to have Teff that were offset from the black panel temperatures by a constant amount for the entire year. Thus, measurements of sample and black panel need to be made for only a few weeks to determine the offset and give the annual sample Teff if the annual black panel Teff is known. Light-colored samples probably are better compared with the ambient temperatures. Sample temperatures in xenon arc exposures usually are higher than the outdoor Teff, so Arrhenius temperature corrections need to be carried out to relate accelerated to outdoor exposures. Temperatures in xenon arc exposure tests often correspond more closely to maximum temperatures that samples might encounter for only a few hours per year.  相似文献   
22.
23.
24.
Kirkbright GF  Sargent M  West TS 《Talanta》1969,16(11):1467-1475
The separation of the premixed nitrous oxide-acetylene flame at a 50-mm slot burner by sheathing with argon or nitrogen is described. In comparison with the conventional flame, the interconal zone of the hot, slightly fuel-rich separated flames provides better conditions for the maintenance of free atoms of elements which form refractory oxides. Optimum conditions for the determination by atomic-absorption spectroscopy of the elements Al, Be, Ge, Mo, Si, Ti, V and Zr in both separated and conventional flames at the same burner have been established. Significant improvement in detection limits and sensitivities is obtained in the separated flames.  相似文献   
25.
Hobbs RS  Kirkbright GF  Sargent M  West TS 《Talanta》1968,15(10):997-1007
The primary and secondary combination zones of an air-acetylene flame have been separated by a stream of nitrogen flowing parallel to the flame to prevent access of atmospheric oxygen to its base. The flame is very stable over a wide range of fuel-air mixture strengths, and organic solvents may be aspirated without difficulty. The low flame background enables thermal-emission and atomic-fluorescence measurements to be made with high sensitivity. Bismuth, for example, has been determined in the range 5-200 ppm by its thermal emission at 306.8 nm, with a detection limit of 2 ppm in aqueous solution, and in the range 1-10 ppm with a detection limit of 0.3 ppm in 50% ethanolic solution. Zinc and cadmium have been determined at 213.9 nm and 228.8 nm by atomic-fluorescence spectroscopy in this flame with detection limits of 2 x 10(-4) ppm and 5 x 10(-4) ppm respectively, vapour-discharge lamps being used as sources of excitation. The results obtained represent a considerable improvement over those available by the same methods in a conventional air-acetylene flame.  相似文献   
26.
27.
This note gives a proof of convergence of a class of gradient-related minimization algorithms under slightly weaker conditions than were used in a recent paper (see Ref. 1) on the same subject.  相似文献   
28.
Fluorescent pyrid-2-yl ureas were prepared by treating halogenated 2-aminopyridines with hexyl isocyanate, followed by Sonogashira coupling with arylacetylenes. The sensors emit light of ~360 nm with quantum yields of 0.05-0.1 in acetonitrile solution. Addition of strong organic acids (pK(a) < 13 in CH(3)CN) shifts the fluorescence band to lower energy, and clean isoemissive behavior is observed. Fluorescence response curves (i.e., F/F(0) vs [acid](total)) are hyperbolic in shape for CCl(3)COOH and CF(3)COOH, with association constants on the order of 10(3) M(-1) for both acids. (1)H NMR titrations and DFT analyses indicate that trihaloacetic acids bind in ionized form to the receptors. Pyridine protonation disrupts an intramolecular H-bond, thereby unfolding an array of ureido NH donors for recognition of the corresponding carboxylates. Methanesulfonic acid protonates the sensors, but no evidence for conjugate base binding at the urea moiety is found by NMR. An isosteric control compound that lacks an integrated pyridine does not undergo significant fluorescence changes upon acidification.  相似文献   
29.
30.
Egyptian blue has been identified in a painting from 1524 by the Italian artist Ortolano Ferrarese (Giovanni Battista Benvenuto). Egyptian blue is the oldest known synthetic pigment, invented by the Egyptians in the fourth dynasty (2613–2494 bc) of the Old Kingdom and extensively used throughout Antiquity. From about 1000 a.d., it disappeared from the historical record and was only reinvented in the late nineteenth and early twentieth century. The discovery of Egyptian blue in Ortolano Ferrarese’s painting from 1524 shows that Egyptian blue was in fact available in the period from which it is normally considered not to exist. The identification of Egyptian blue is based on optical microscopy supported by energy-dispersive spectroscopy and visual light photon-induced spectroscopy, and finally confirmed by Raman microspectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号