首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2340篇
  免费   123篇
  国内免费   9篇
化学   1947篇
晶体学   13篇
力学   35篇
数学   253篇
物理学   224篇
  2024年   3篇
  2023年   32篇
  2022年   51篇
  2021年   71篇
  2020年   104篇
  2019年   73篇
  2018年   49篇
  2017年   60篇
  2016年   92篇
  2015年   74篇
  2014年   83篇
  2013年   143篇
  2012年   194篇
  2011年   223篇
  2010年   85篇
  2009年   87篇
  2008年   159篇
  2007年   182篇
  2006年   156篇
  2005年   147篇
  2004年   121篇
  2003年   74篇
  2002年   58篇
  2001年   16篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   10篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   12篇
  1984年   6篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1970年   1篇
  1944年   1篇
排序方式: 共有2472条查询结果,搜索用时 15 毫秒
31.
Results of experimental and theoretical studies of dipole-bound negative ions of the highly polar molecules ethylene carbonate (EC, C3H4O3, mu=5.35 D) and vinylene carbonate (VC, C3H2O3, mu=4.55 D) are presented. These negative ions are prepared in Rydberg electron transfer (RET) reactions in which rubidium (Rb) atoms, excited to ns or nd Rydberg states, collide with EC or VC molecules to produce EC- or VC- ions. In both cases ions are produced only when the Rb atoms are excited to states described by a relatively narrow range of effective principal quantum numbers, n*; the greatest yields of EC- and VC- are obtained for n*(max)=9.0+/-0.5 and 11.6+/-0.5, respectively. Charge transfer from low-lying Rydberg states of Rb is characteristic of a large excess electron binding energy (Eb) of the neutral parent; employing the previously derived empirical relationship Eb=23/n*(max)(2.8) eV, the electron binding energies are estimated to be 49+/-8 meV for EC and 24+/-3 meV for VC. Electron photodetachment studies of EC- show that the excess electron is bound by 49+/-5 meV, in excellent agreement with the RET results, lending credibility to the empirical relationship between Eb and n*(max). Vertical electron affinities for EC and VC are computed employing aug-cc-pVDZ atom-centered basis sets supplemented with a (5s5p) set of diffuse Gaussian primitives to support the dipole-bound electron; at the CCSD(T) level of theory the computed electron affinities are 40.9 and 20.1 meV for EC and VC, respectively.  相似文献   
32.
Summary Ligands which bind to a specific protein binding site are often expected to have a similar electrostatic environment which complements that of the binding site. One method of assessing molecular electrostatic similarity is to examine the possible overlay of the maxima and minima in the electrostatic potential outside the molecules and thereby match the regions where strong electrostatic interactions, including hydrogen bonds, with the residues of the binding site may be possible. This approach is validated with accurate calculations of the electrostatic potential, derived from a distributed multipole analysis of an ab initio charge density of the molecule, so that the effects of lone pair and -electron density are correctly included. We have applied this method to the phosphodiesterase (PDE) III substrate adenosine-3,5-cyclic monophosphate (cAMP) and a range of nonspecific and specific PDE III inhibitors. Despite the structural variation between cAMP and the inhibitors, it is possible to match three or four extrema to produce relative orientations in which the inhibitors are sufficiently sterically and electrostatically similar to the natural substrate to account for their affinity for PDE III. This matching of extrema is more apparent using the accurate electrostatic models than it was when this approach was first applied, using semiempirical point charge models. These results reinforce the hypothesis of electrostatic similarity and give weight to the technique of extrema matching as a useful tool in drug design.  相似文献   
33.
A crystalline glycylglycine complex of monoperoxovanadate has been obtained and its X-ray structure determined. The coordination is pentagonal bipyramidal with the peroxo group and a tridentate glycylglycine occupying the equatorial positions. The axial positions of the anion are occupied by the oxo ligand and by one oxygen of the peroxo group of the adjacent anion. The latter interaction establishes the seventh bond and produces a dimeric structure in the crystalline material. NMR studies of its dissolution in water combined with previously reported results from equilibrium measurements show that the dimer dissociates in water to the monomeric precursor. It is proposed that this monomer corresponds to the complex responsible for the inhibition of the vanadium-catalyzed decomposition of hydrogen peroxide by glycylglycine. Crystal structure of [NEt(4)][VO(O(2))(GlyGly)].1.58H(2)O: monoclinic, space group P2(1); Z = 4; a = 10.618(2) ?; b = 14.803(2) ?; c = 11.809(2) ?; beta = 101.37(2) degrees; V = 1819.7 ?(3); T = 198 K; R(F)() = 0.029 for 2664 data (I(o) >/= 2.5sigma(I(o))) and 431 variables.  相似文献   
34.
The synthesis and properties of mononuclear zinc methoxide ([(ebnpa)Zn-OCH3]ClO4) (1) and hydroxide ([(ebnpa)Zn-OH]ClO4) (2) complexes of a new mixed nitrogen/sulfur ligand (ebnpa = N-2-(ethylthio)ethyl-N,N-bis(6-neopentylamino-2-pyridylmethyl)amine) are reported. The structures of 1 and 2 were determined by X-ray diffraction. Each possesses a single zinc-coordinated anion (methoxide or hydroxide) and exhibits an overall trigonal bipyramidal geometry. Structural and spectroscopic studies indicate the presence of two hydrogen-bonding interactions involving the oxygen atom of the zinc-bound anion in each complex. Treatment of [(ebnpa)Zn-OH]ClO4 with CH3OH results in the formation of an equilibrium mixture of 1 and 2. 1H NMR spectroscopic methods were used to examine the equilibrium as a function of temperature, yielding KMe (304 K) = 0.30(8), DeltaHMe = -0.9(1) kcal/mol, and DeltaSMe = -5(1) eu. The negative enthalpy indicates that spontaneous zinc alkoxide formation from a hydroxide precursor occurs in this system at low temperature. Using the experimentally determined DeltaHMe value, we found the homolytic Zn-O bond dissociation energy (BDE) in the Zn-OCH3 unit to be approximately -14 kcal/mol relative to the Zn-O BDE in the Zn-OH unit.  相似文献   
35.
We have developed methodology for the determination of solution structures of small molecules from residual dipolar coupling constants measured in dilute liquid crystals. The power of the new technique is demonstrated by the determination of the structure of methyl beta-d-xylopyranoside (I) in solution. An oriented sample of I was prepared using a mixture of C(12)E(5) and hexanol in D(2)O. Thirty residual dipolar coupling constants, ranging from -6.44 to 4.99 Hz, were measured using intensity-based J-modulated NMR techniques. These include 15 D(HH), 4 (1)D(CH), and 11 (n)D(CH) coupling constants. The accuracy of the dipolar coupling constants is estimated to be < +/- 0.02 Hz. New constant-time HMBC NMR experiments were developed for the measurement of (n)D(CH) coupling constants, the use of which was crucial for the successful structure determination of I, as they allowed us to increase the number of fitted parameters. The structure of I was refined using a model in which the directly bonded interatom distances were fixed at their ab initio values, while 16 geometrical and 5 order parameters were optimized. These included 2 CCC and 6 CCH angles, and 2 CCCC and 6 CCCH dihedral angles. Vibrationally averaged dipolar coupling constants were used during the refinement. The refined solution structure of I is very similar to that obtained by ab initio calculations, with 11 bond and dihedral angles differing by 0.8 degrees or less and the remaining 5 parameters differing by up to 3.3 degrees . Comparison with the neutron diffraction structure showed larger differences attributable to crystal packing effects. Reducing the degree of order by using dilute liquid crystalline media in combination with precise measurement of small residual dipolar coupling constants, as shown here, is a way of overcoming the limitation of strongly orienting liquid crystals associated with the complexity of (1)H NMR spectra for molecules with more than 12 protons.  相似文献   
36.
One of the most significant challenges facing the biomimetic synthesis of materials is achieving the requisite level of dimensional and spatial control. Typical reaction conditions for biomimetic silica synthesis allow for continued growth and ripening leading to the formation of larger nanospheres on the order of 200-600 nm in diameter. Herein, we have used polyamidoamine and polypropylenimine dendrimers as templates to expand the reaction conditions of biogenic silica production to produce a more robust synthesis leading to size-selective precipitation of silica nanospheres. Through the use of defined concentrations of phosphate buffer and main group metal chloride salts, we have shown that the biomimetic silica growth process is controlled by cationic neutralization of the anionic silica nanosphere surface. Neutralization minimizes electrostatic repulsions, allowing for agglomerization and continued growth of nanospheres. By controlling these concentrations, we can selectively produce silica nanospheres of desired dimensions between 30 and 300 nm without adversely affecting the template's activity.  相似文献   
37.
A combined gas chromatographic mass spectrometric (GC/MS/MS) method for the determination of seven polybrominated diphenyl ethers (PBDEs) and seven marker polychlorinated biphenyls (PCBs) in adipose tissue has been developed. Adipose tissue was melted and filtered through anhydrous sodium sulphate to obtain pure fat. Clean-up was performed using a glass column containing acidified silica, deactivated alumina and anhydrous sodium sulphate. Polybrominated biphenyl (PBB) 155 and Mirex were added as internal standards for PBDEs and PCBs, respectively. Injection standards, PBB 103 and PCB 143, for PBDEs and PCBs, respectively, were added before analysis with GC/MS/MS. The developed GC/MS/MS method has the advantage of being more selective than single MS methods because matrix effects are largely eliminated. Validation of this method was conducted according to Commission Decision 2002/657/EC. Decision limits for PBDEs and PCBs ranged from 0.06-0.15 ng g(-1) and from 0.35-1.22 ng g(-1), respectively. Detection capabilities were all between 0.23-0.55 ng g(-1) for PBDEs and between 0.98-2.29 ng g(-1) for PCBs. Precision, recovery, bias and selectivity were tested, with satisfactory results.  相似文献   
38.
In this work, we examine the role of curvature and surfactant packing in controlling the structure of periodic silica/surfactant composites by driving such materials through a transformation from a hexagonal to a lamellar phase. We focus on how the interplay of desired packing and volume constraints dictates the resulting structures. In general, surfactants expand in a complex way upon heating, and this can cause a change in the optimal packing geometry. However, the presence of a rigid silica framework may prevent surfactants from reaching this preferred volume and/or curvature. Real-time in situ X-ray diffraction is used to monitor the structural evolution of these materials heated under hydrothermal treatments. Because the thermal-driven disorder of the surfactant tails drives the phase transition, we examine four types of composites with varying tail density. Ordinarily, composites consist of surfactants with one 20-carbon tail and one positively charged ammonium headgroup. Tail density is varied by replacing a small amount (0-16%) of these single-tail, single-head surfactants with single-tail, double-head 'gemini' surfactants. A greater head--tail ratio indeed produces different results, causing the phase transition to occur at higher temperatures. Using simple geometric models to gain better understanding of our experimental results, we find that, while both unfavorable curvature and limited volume may exist for the surfactants in these composites, the constrained curvature appears to be the dominant effect in driving structural rearrangement.  相似文献   
39.
A new process for preparing oligonucleotide arrays is described that uses surface grafting chemistry which is fundamentally different from the electrostatic adsorption and organic covalent binding methods normally employed. Solid supports are modified with a mixed organic/inorganic zirconium phosphonate monolayer film providing a stable, well-defined interface. Oligonucleotide probes terminated with phosphate are spotted directly on to the zirconated surface forming a covalent linkage. Specific binding of terminal phosphate groups with minimal binding of the internal phosphate diesters has been demonstrated. The mixed organic/inorganic thin films have also been extended for use arraying DNA duplex probes, and therefore represent a viable general approach to DNA-based bioarrays. Ideas for interfacing mixed organic/inorganic interfaces to other bioapplications are also discussed.  相似文献   
40.
Protein film voltammetry of Paracoccus pantotrophus respiratory nitrate reductase (NarGH) and Synechococcus elongatus assimilatory nitrate reductase (NarB) shows that reductive activation of these enzymes may be required before steady state catalysis is observed. For NarGH complementary spectroscopic studies suggest a structural context for the activation. Catalytic protein film voltammetry at a range of temperatures has allowed quantitation of the activation energies for nitrate reduction. For NarGH with an operating potential of ca. 0.05 V the activation energy of ca. 35 kJ mol-1 is over twice that measured for NarB whose operating potential is ca. -0.35 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号