首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2407篇
  免费   112篇
  国内免费   11篇
化学   1970篇
晶体学   13篇
力学   36篇
数学   254篇
物理学   257篇
  2024年   4篇
  2023年   32篇
  2022年   73篇
  2021年   71篇
  2020年   105篇
  2019年   73篇
  2018年   50篇
  2017年   60篇
  2016年   92篇
  2015年   74篇
  2014年   94篇
  2013年   159篇
  2012年   200篇
  2011年   223篇
  2010年   85篇
  2009年   87篇
  2008年   159篇
  2007年   182篇
  2006年   156篇
  2005年   147篇
  2004年   121篇
  2003年   74篇
  2002年   58篇
  2001年   16篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   10篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   12篇
  1984年   6篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1970年   1篇
  1944年   1篇
排序方式: 共有2530条查询结果,搜索用时 15 毫秒
81.
Lanthanide complexes (Ln=Eu, Tb, and Yb) that are based on a C2‐symmetric cyclen scaffold were prepared and characterized. The addition of fluoride anions to aqueous solutions of the complexes resulted in the formation of dinuclear supramolecular compounds in which the anion is confined into the cavity that is formed by the two complexes. The supramolecular assembly process was monitored by UV/Vis absorption, luminescence, and NMR spectroscopy and high‐resolution mass spectrometry. The X‐ray crystal structure of the europium dimer revealed that the architecture of the scaffold is stabilized by synergistic effects of the Eu? F? Eu bridging motive, π stacking interactions, and a four‐component hydrogen‐bonding network, which control the assembly of the two [EuL] entities around the fluoride ion. The strong association in water allowed for the luminescence sensing of fluoride down to a detection limit of 24 nM .  相似文献   
82.
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.  相似文献   
83.
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R–POM1–R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2–R–POM1–R–POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson–Evans {XMo6} (X = Cr or Al) and trisubstituted Wells–Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.

A versatile modular approach has been developed for incorporating different metal-oxo nanoclusters with characteristic structures into a single hybrid molecule by covalently linking them with polyol ligands.  相似文献   
84.
We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.  相似文献   
85.
Myo-inositol is a strongly coupled system and resonates at four chemical shift positions. At 1.5 T, only the singlet component at 3.57 ppm is detected. However, at 3 T this resonance is resolved into its components at 3.55 ppm and 3.61 ppm. Due to the increased spectral resolution and signal-to-noise ratio, it is anticipated that the quantification of myo-inositol should improve at 3 T. Using data from normal controls and the LCmodel quantification procedure, we found that the quantification precision, reproducibility and detection sensitivity of myo-inositol is significantly better at 3 T relative to 1.5 T.  相似文献   
86.
CH3NH3PbBr3 perovskite quantum dots (PQDs) are synthesized by using four different linear alkyl phosphonic acids (PAs) in conjunction with (3-aminopropyl)triethoxysilane (APTES) as capping ligands. The resultant PQDs are characterized by means of XRD, TEM, Raman spectroscopy, FTIR spectroscopy, UV/Vis, photoluminescence (PL), time-resolved PL, and X-ray photoelectron spectroscopy (XPS). PA chain length is shown to control the PQD size (ca. 2.9–4.2 nm) and excitonic absorption band positions (λ=488–525 nm), with shorter chain lengths corresponding to smaller sizes and bluer absorptions. All samples show a high PL quantum yield (ca. 46–83 %) and high PL stability; this is indicative of a low density of band gap trap states and effective surface passivation. Stability is higher for smaller PQDs; this is attributed to better passivation due to better solubility and less steric hindrance of the shorter PA ligands. Based on the FTIR, Raman, and XPS results, it is proposed that Pb2+ and CH3NH3+ surface defects are passivated by R−PO32− or R−PO2(OH), whereas Br surface defects are passivated by R−NH3+ moieties. This study establishes the combination of PA and APTES ligands as a highly effective dual passivation system for the synergistic passivation of multiple surface defects of PQDs through primarily ionic bonding.  相似文献   
87.
Long sought after [4+2] cyclases have sprouted up in numerous biosynthetic pathways in recent years, raising hopes for biocatalytic solutions to cycloaddition catalysis, an important problem in chemical synthesis. In a few cases, detailed pictures of the inner workings of these catalysts have emerged, but intense efforts to gain deeper understanding are underway by means of crystallography and computational modelling. This Minireview aims to shed light on the catalytic strategies that this highly diverse family of enzymes employs to accelerate and direct the course of [4+2] cycloadditions with reference to small-molecule catalysts and designer enzymes. These catalytic strategies include oxidative or reductive triggers and lid-like movements of enzyme domains. A precise understanding of natural cycloaddition catalysts will be instrumental for customizing them for various synthetic applications.  相似文献   
88.
Together with my group and collaborators, I have been fortunate to have had a key role in the discovery of new ionization processes that we developed into new flexible, sensitive, rapid, reliable, and robust ionization technologies and methods for use in mass spectrometry (MS). Our current research is focused on how best to understand, improve, and use these novel ionization processes which convert volatile and nonvolatile compounds from solids or liquids into gas‐phase ions for analysis by MS using e.g. mass‐selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and improved mass and drift time resolution. In my view, the apex was the discovery of vacuum matrix‐assisted ionization (vMAI) in 2012 on an intermediate pressure matrix‐assisted laser desorption/ionization (MALDI) source without the use of a laser, high voltages, or any other added energy. Only exposure of the matrix:analyte to the sub‐atmospheric pressure of the mass spectrometer was necessary to initiate ionization. These findings were initially rejected by three different scientific journals, with comments related to ‘how can this work?’, ‘where do the charges come from?’, and ‘it is not analytically useful’. Meanwhile, we and others have demonstrated analytical utility without a complete understanding of the mechanism. In reality, MALDI and electrospray ionization are widely used in science and their mechanisms are still controversially discussed despite use and optimization of now 30 years. This Perspective covers the applications and mechanistic aspects of the novel ionization processes for use in MS that guided us in instrument developments, and provides our perspective on how they relate to traditional ionization processes.  相似文献   
89.
90.
Performing a heterogeneous catalysis with proteins is still a challenge. Herein, we demonstrate the importance of cross-linked crystals for sulfoxide oxidation by an artificial enzyme. The biohybrid consists of the insertion of an iron complex into a NikA protein crystal. The heterogeneous catalysts displays a better efficiency-with higher reaction kinetics, a better stability and expand the substrate scope compared to its solution counterpart. Designing crystalline artificial enzymes represents a good alternative to soluble or supported enzymes for the future of synthetic biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号