首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3424篇
  免费   154篇
  国内免费   17篇
化学   2547篇
晶体学   19篇
力学   62篇
数学   348篇
物理学   619篇
  2024年   3篇
  2023年   43篇
  2022年   141篇
  2021年   140篇
  2020年   110篇
  2019年   114篇
  2018年   89篇
  2017年   72篇
  2016年   172篇
  2015年   149篇
  2014年   137篇
  2013年   230篇
  2012年   272篇
  2011年   304篇
  2010年   191篇
  2009年   156篇
  2008年   211篇
  2007年   189篇
  2006年   175篇
  2005年   146篇
  2004年   103篇
  2003年   73篇
  2002年   72篇
  2001年   33篇
  2000年   32篇
  1999年   21篇
  1998年   15篇
  1997年   8篇
  1996年   24篇
  1995年   18篇
  1994年   18篇
  1993年   6篇
  1992年   9篇
  1991年   17篇
  1990年   7篇
  1989年   11篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1977年   4篇
  1976年   4篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
排序方式: 共有3595条查询结果,搜索用时 31 毫秒
61.
The preparation of a 1:1 complex involving-cyclodextrin (-CD) and phenylpropiolic acid (PPA) is reported. The new inclusion complex of-CD has been characterized on the basis of its chemical analysis, thermal behavior, infrared spectrum, X-ray powder pattern and13C-NMR spectrum in DMSO solution.  相似文献   
62.
The reaction of ethylene sulfide with 3-aminopropyltrimethoxysilane gave a new silylating agent, which was anchored onto a silica surface via the sol–gel procedure. This surface displayed a chelating moiety containing nitrogen and two sulfur basic centers potentially capable of extracting cations from aqueous solutions. The process of metal extraction was followed by a batch method, and fitted to a modified Langmuir equation. The maximum adsorption capacities found were: 2.06 ± 0.01, 3.72 ± 0.02, and 5.14 ± 0.02 mmol g−1 for Pb(II), Cd(II), and Hg(II), respectively. The enthalpies of bending are: −1.16 ± 0.04, −3.60 ± 0.10, and −8.94 ± 0.03 kJ mol−1 for Cd(II), Pb(II), and Hg(II), respectively. The Gibbs free energies of binding agree with the spontaneity of the proposed reactions between cations and basic centers.  相似文献   
63.
The last step of the production of four phthalimide-derived acids, designed to act as antiasthma drugs, was performed by enzymatic hydrolysis of the respective methyl or ethyl esters. The esters 4-ethyl-[2-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)]-phenoxyacetic methyl ester (PHT-MET), 4-ethyl-[2-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)]-phenoxyacetic ethyl ester, 4-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)-phenoxyacetic ethyl ester, and 2-(1,3-dioxo-1, 3-dihydro-2-isoindoylyl)-phenoxyacetic ethyl ester were hydrolyzed by immobilized lipase. The enzymatic reaction could be used only to produce the desired 4-substituted compounds. The best result that was found to hydrolysis of PHT-MET, and, therefore, that ester was selected for optimization experiments in a three-phase system. Reactions were performed with solid biocatalyst (Lipozyme® RM IM), organic solvent phase (ethyl acetate), and aqueous phase (saturated Na2CO3 solution). To optimize the reaction conditions, an experimental design optimization procedure was used. The variables studied were the amount of enzyme, the temperature, and the volume of the aqueous solution. Time course experiments were then performed for different initial enzyme concentrations (0.5, 0.9, and 1.4 UH/mL of solvent). The optimized reaction conditions found were 20 mg of Lipozyme (0.9 UH/mLsolvent) and 5.0 mL of Na2CO3(sat) at 40°C for 6 h.  相似文献   
64.
Nitrogen dioxide ((*)NO(2)) participates in a variety of biological reactions. Of great interest are the reactions of (*)NO(2) with oxymyoglobin and oxyhemoglobin, which are the predominant hemeproteins in biological systems. Although these reactions occur rapidly during the nitrite-catalyzed autoxidation of hemeproteins, their roles in systems producing (*)NO(2) in the presence of these hemeproteins have been greatly underestimated. In the present study, we employed pulse radiolysis to study directly the kinetics and mechanism of the reaction of oxymyoglobin (MbFe(II)O(2)) with (*)NO(2). The rate constant of this reaction was determined to be (4.5 +/- 0.3) x 10(7) M(-1)s(-1), and is among the highest rate constants measured for (*)NO(2) with any biomolecule at pH 7.4. The interconversion among the various oxidation states of myoglobin that is prompted by nitrogen oxide species is remarkable. The reaction of MbFe(II)O(2) with (*)NO(2) forms MbFe(III)OONO(2), which undergoes rapid heterolysis along the O-O bond to yield MbFe(V)=O and NO(3-). The perferryl-myoglobin (MbFe(V)=O) transforms rapidly into the ferryl species that has a radical site on the globin ((*)MbFe(IV)=O). The latter oxidizes another oxymyoglobin (10(4) M(-1)s(-1) < k(17) < 10(7) M(-1)s(-1)) and generates equal amounts of ferrylmyoglobin and metmyoglobin. At much longer times, the ferrylmyoglobin disappears through a relatively slow comproportionation with oxymyoglobin (k(18) = 21.3 +/- 5.3 M(-1)s(-1)). Eventually, each (*)NO(2) radical converts three oxymyoglobin molecules into metmyoglobin. The same intermediate, namely MbFe(III)OONO(2), is also formed via the reaction peroxynitrate (O(2)NOO(-)/O(2)NOOH) with metmyoglobin (k(19) = (4.6 +/- 0.3) x 10(4) M(-1)s(-1)). The reaction of (*)NO(2) with ferrylmyoglobin (k(20) = (1.2 +/- 0.2) x 10(7) M(-1)s(-1)) yields MbFe(III)ONO(2), which in turn dissociates (k(21) = 190 +/- 20 s(-1)) into metmyoglobin and NO(3-). This rate constant was found to be the same as that measured for the decay of the intermediate formed in the reaction of MbFe(II)O(2) with (*)NO, which suggests that MbFe(III)ONO(2) is the intermediate observed in both processes. This conclusion is supported by thermokinetic arguments. The present results suggest that hemeproteins may detoxify (*)NO(2) and thus preempt deleterious processes, such as nitration of proteins. Such a possibility is substantiated by the observation that the reactions of (*)NO(2) with the various oxidation states of myoglobin lead to the formation of metmyoglobin, which, though not functional in the gas transport, is nevertheless nontoxic at physiological pH.  相似文献   
65.
A method for coupling an electrophoretic driven separation to a liquid flow, using conventional fused-silica capillaries and a soft polymeric interface is presented. A novel design of the electrode providing high voltage to the electrophoretic separation was also developed. The electrode consisted of a conductive polyimide/graphite imbedded coating immobilized onto the capillary electrophoresis (CE) column inlet. This integrated electrode gave the same separation performance as a commonly used platinum electrode. The on-column electrode also showed good electrochemical stability in chronoamperometric experiments. In addition, with this electrode design, the electrode position relative to the inlet end of the CE column will always be constant and well defined. The on-line flow injection analysis (FIA)-CE system was used with electrospray ionization (ESI)-time of flight (TOF)-mass spectrometry detection. The preparation of the PDMS (poly(dimethylsiloxane)) interface for FIA-CE is described in detail and used for initial tests of the on-column polymer-imbedded graphite inlet electrode. In this interface, a pressure-driven liquid flow, a make up CE electrolyte and a CE column inlet meet in a two-level cross (95 microm ID) in the PDMS structure, enabling independent flow characterization.  相似文献   
66.
Ethylene-acrylic acid copolymers (EAAs) and commercial montmorillonite clays organically modified with dimethyldihydrogenatedtallowammonium ions (Cloisite® 15A and 20A) were used for the synthesis of nanocomposites by melt-compounding, static melting of polymer/clay mixtures and solution-intercalation in order to compare the effectiveness of these procedures and to shed light on the thermodynamics and the kinetics of the intercalation process. The preparation from solution was made by the use of several solvents, such as toluene, xylene, chloroform, etc., which were then removed from the hybrids by precipitation in different non-solvents or by evaporation. Particular attention was paid to the effect of the thermal treatments which are often used when processing the composites prepared from solution. X-ray diffraction (XRD) of the solution-blended composites showed that no intercalation of the EAAs inside the clay galleries can be achieved if solvent removal is made by precipitation in non-solvents or by room-temperature evaporation. On the contrary, intercalation was found to occur very rapidly (in less than 1 min) when both the hybrids prepared from solution and the mechanical blends of powdered components were melted in the absence of shear. Polymer intercalation was also found to occur, though with a lower rate, upon annealing the powder mixtures at temperatures lower than the EAA melting point. Microscopic observations made by polarized optical microscopy, scanning electron microscopy and transmission electron microscopy showed that the clay particles dispersion is appreciably lower for the composites prepared from solution, compared to those produced in the melt under shear flow conditions. The hybrids obtained by static melting of powder mixtures, on the other side, were expectedly found to comprise micron sized clay agglomerates, although intercalation was demonstrated also for these materials by XRD. The structure of the intercalated silicate layers stacks, characterized by an interlayer spacing of 4.0 nm, was shown to be independent of the preparation procedure and to correspond to thermodynamic equilibrium.  相似文献   
67.
Series of new aromatic R2R2N+Br (R=benzyl, 4-methylbenzyl, 2-phenylethyl, 3-phenylpropyl; R′=ethyl, methyl, isopropyl) or RR2NH+Br-type (R=benzyl, R′=isopropyl) quaternary ammonium bromides were prepared by using novel synthetic route in which a formamide (N,N-diethylformamide, N,N-dimethylformamide, N,N-diisopropylformamide) is treated with aralkyl halide in presence of a weak base. The compounds were characterized by 1H-NMR and 13C-NMR spectroscopy and mass spectrometry. Structures of the crystalline compounds were determined by X-ray single crystal diffraction, and in addition the powder diffraction method was used to study the structural similarities between the single crystal and microcrystalline bulk material. Three of the compounds crystallized in monoclinic, two in orthorhombic and one in triclinic crystal system, showing ion pairs, which are interconnected by weak hydrogen bonds and weak π-π interactions between the phenyl rings. Three of the compounds appeared as viscous oil or waxes. Finally, TG/DTA and DSC methods were used to analyze thermal properties of the prepared compounds. The lowest melting points were obtained for diethyldi-(2-phenylethyl)ammonium bromide (122.2 °C) and for diethyldi-(3-phenylpropyl)-ammonium bromide (109.1 °C). In general, decomposition of the compounds started at 170-190 °C without identifiable cleavages, thus liquid ranges of 30-70 °C were observed for some of the compounds.  相似文献   
68.
69.
Hereditary vitamin D-resistant rickets (HVDRR) is a genetic disorder caused by mutations in the vitamin D receptor, which lead to resistance to 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. We found that the A ring-modified analogues, 2alpha-(3-hydroxypropyl)- and 2alpha-(3-hydroxypropoxy)-1alpha,25(OH)(2)D(3), (O1C3 and O2C3) can bind better than the natural hormone to the mutant VDR (R274A), which similar to the HVDRR mutant, R274L, had lost the hydrogen bond to the 1alpha-hydroxyl group of 1alpha,25(OH)(2)D(3).  相似文献   
70.

Films of titanate nanosheets (approx. 1.8-nm layer thickness and 200-nm size) having a lamellar structure can form electrolyte-filled semi-permeable channels containing tetrabutylammonium cations. By evaporation of a colloidal solution, persistent deposits are readily formed with approx. 10-μm thickness on a 6-μm-thick poly(ethylene-terephthalate) (PET) substrate with a 20-μm diameter microhole. When immersed in aqueous solution, the titanate nanosheets exhibit a p.z.c. of − 37 mV, consistent with the formation of a cation conducting (semi-permeable) deposit. With a sufficiently low ionic strength in the aqueous electrolyte, ionic current rectification is observed (cationic diode behaviour). Currents can be dissected into (i) electrolyte cation transport, (ii) electrolyte anion transport and (iii) water heterolysis causing additional proton transport. For all types of electrolyte cations, a water heterolysis mechanism is observed. For Ca2+ and Mg2+ions, water heterolysis causes ion current blocking, presumably due to localised hydroxide-induced precipitation processes. Aqueous NBu4+ is shown to ‘invert’ the diode effect (from cationic to anionic diode). Potential for applications in desalination and/or ion sensing are discussed.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号