首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   17篇
  国内免费   2篇
化学   293篇
晶体学   8篇
力学   6篇
综合类   1篇
数学   21篇
物理学   70篇
  2024年   3篇
  2023年   7篇
  2022年   32篇
  2021年   40篇
  2020年   19篇
  2019年   24篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   18篇
  2014年   20篇
  2013年   26篇
  2012年   18篇
  2011年   20篇
  2010年   17篇
  2009年   16篇
  2008年   11篇
  2007年   15篇
  2006年   10篇
  2005年   20篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   1篇
  1966年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
81.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   
82.
ZnO Nano powders were prepared by co-precipitation method which includes post-oxidation and annealing in air. Influence of laser irradiation was carried out using 355 nm laser on the physical properties of ZnO nanoparticles. SEM studies reveal agglomeration of grains resulting into enlargement and deformation of the nanoparticles. XRD pattern exhibited decrease in FWHM which is a clear evidence of the increase in crystallite size due to laser irradiation. Optical properties showed decrease in the band gap of the laser irradiated Nano powders. The observed results indicated the UV laser irradiation increases the ZnO nanoparticles crystallinity that affects the optical properties of the ZnO.  相似文献   
83.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption. Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method (HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   
84.
Perylene diimide (PDI) and naphthalene diimides (NDIs) are compounds widely used in supramolecular structures due to their versatile and functional properties. They have high absorptions and photoluminescence capabilities, which make them ideal for electronic transition studies. Reflux method, a widely employed synthetic technique, was utilized to synthesize NDI and PDI derivatives. In this method, the respective amino acids and NTDA (naphthalene-1,4,5,8-tetracarboxylic dianhydride) were combined in acetic acid and the resulting mixture was subjected to reflux. This study centered on a diverse set of NDI and PDI ligands, comprising L-ala-NDI, B-ala-NDI, Gly-NDI, Imi-NDI, Pyr-NDI, L-ala-PDI, B-ala-PDI, Gly-PDI, Imi-PDI, and Pyr-PDI ligands. Crystal structures were obtained for three NDI ligands, while the characterization of all ligands involved several analytical techniques such as NMR, IR, UV, DFT, TD-DFT calculations, and single-crystal x-ray crystallography specifically for the NDI ligands. The investigation focused on studying the electron acceptor/donor behavior of the NDI and PDI ligands, identifying their potential for charge transfer applications. Furthermore, the NLO (nonlinear optical) response of all 10 NDI and PDI ligands was assessed through an analysis involving HOMO-LUMO, TDM, EDDM, NCI, Iso-surface, MEP, natural population, and DOS analysis. This evaluation encompassed the examination of linear polarizability, as well as first and second hyperpolarizability in the context of NLO. The findings of the study revealed that Gly-PDI, Imi-PDI, L-ala-PDI, and B-ala-PDI ligands displayed a higher NLO response compared with the other ligands. These results highlight the potential of these ligands for nonlinear optical applications. The comprehensive characterization and assessment of the NDI and PDI ligands contribute to a deeper understanding of their electron properties, positioning them as promising candidates for charge transfer and nonlinear optical materials.  相似文献   
85.
This study appraises the antioxidant and antimicrobial attributes of various solvent extracts (absolute methanol, aqueous methanol, absolute ethanol, aqueous ethanol, absolute acetone, aqueous acetone, and deionized water) from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Maximum extraction yield of antioxidant components from bark (16.31%), leaves (11.42%) and seeds (21.51%) of P. pinnata was obtained using aqueous methanol (20:80). Of the extracts tested, the bark extract, obtained with aqueous methanol, exhibited greater levels of total phenolics [6.94 g GAE/100 g dry weight (DW)], total flavonoids (3.44 g CE/100 g DW), inhibition of linoleic acid peroxidation (69.23%) and DPPH radical scavenging activity (IC(50) value, 3.21 μg/mL), followed by leaves and seeds extracts. Bark extract tested against a set of bacterial and fungal strains also revealed the strongest antimicrobial activity with the largest inhibition zone and lowest minimum inhibitory concentration (MIC). HPLC analysis of aqueous methanol extracts from bark, leaves and seeds indicated the presence of protocatechuic, ellagic, ferulic, gallic, gentisic, 4-hydroxybenzoic and 4-hydroxycinnamic acids in bark (1.50-6.70 mg/100 g DW); sorbic, ferulic, gallic, salicylic and p-coumaric acids in leaves (1.18-4.71 mg/100 g DW); vanillic, gallic and tannic acids in seeds (0.52-0.65 mg/100 g DW) as the main phenolic acids. The present investigation concludes that the tested parts of P. pinnata, in particular the bark, have strong potential for the isolation of antioxidant and antimicrobial agents for functional food and pharmaceutical uses.  相似文献   
86.
In the present work, three-dimensional quantitative structure–activity relationship (3-D QSAR) studies on a set of 70 anthranilimide compounds has been performed using docking-based as well as substructure-based molecular alignments. This resulted in the selection of more statistically relevant substructure-based alignment for further studies. Further, molecular models with good predictive power were derived using CoMFA (r 2?=?0.997; Q 2?=?0.578) and CoMSIA (r 2?=?0.976; Q 2?=?0.506), for predicting the biological activity of new compounds. The so-developed contour plots identified several key features of the compounds explaining wide activity ranges. Based on the information derived from the CoMFA contour maps, novel leads were proposed which showed better predicted activity with respect to the already reported systems. Thus, the present study not only offers a highly significant predictive QSAR model for anthranilimide derivatives as glycogen phosphorylase (GP) inhibitors which can eventually assist and complement the rational drug-design attempts, but also proposes a highly predictive pharmacophore model as a guide for further development of selective and more potent GP inhibitors as anti-diabetic agents.  相似文献   
87.
A novel set of light-responsive polyelectrolytes has been developed and studied, to control and tune surface wettability by introducing various types of substituted R head-groups of azo polyelectrolytes in self-assembled multilayer (SAMU) films. As part of a larger project to develop polymer surfaces where one can exert precise control over properties important to proteins and cells in contact, photo-reversibly, we describe here how one can tune quite reliably the contact angle of a biocompatible SAMU, containing a photo-reversible azo chromophore for eventual directed cell growth. The azo polyelectrolytes described here have different substituted R head-group pairs of shorter-ionized hydrophilic COOH and SO3H, shorter non-ionized hydrophobic H and OC2H5, and larger non-ionized hydrophobic octyl C8H17 and C8F17, and were employed as polyanions to fabricate the SAMU onto silicon substrates by using the counter-charge polycation PDAC. The prepared SAMU films were primarily characterized by measurement of their contact angles with water. The surface wetting properties of the thin films were found to be dependent on the type of substituted R-groups of the azo polyelectrolytes through their degree of ionization, size, hydrophobicity/hydrophilicity, solubility, conformation, and inter-polymeric association and intra-polymeric aggregation. All these factors appeared to be inter-related, and influenced variations in hydrophobic/hydrophilic character to different extents of aggregates/non-aggregates in solution because of solvation effects of the azo polyanions, and were thus manifested when adsorbed as thin films via the SAMU deposition process. For example, one interesting observation is significantly higher contact angles of 79° for SAMU films of larger octyl R groups of PAPEA-C8F17 and PAPEA-C8H17 than for others with contact angles of 64° observed for non-polar R-groups of OC2H5 and H. Furthermore, lower contact angle values of 59° for SAMU films with polar R-groups of COOH and SO3H relative to that of non-polar R-groups are in accordance with their expected order of the hydrophilicity or hydrophobicity. It is possible that the large octyl groups are more effective in shielding the ionic functional groups on the substrate surface, and contributed less to the water drop-molecule interactions with ionic groups of the PDAC and/or AA groups. In addition, higher hydrophobicity of the SAMU films may be due to the incorporation of bulky and hydrophobic groups in these polyelectrolytes, which can produce aggregates on the surfaces of the SAMU films. Through understanding and controlling the complex aggregation behavior of the different substituted R-groups of these azo polyelectrolytes, and hence their adsorption on substrates, it appears possible to finely tune the surface energy of these biocompatible films over a wide range, enhance the photo-switching capabilities of the SAMU films, and tailor other surface properties for the development and application of new devices in diverse areas of microfluidics, specialty coatings, sensors, and biomedical sciences.  相似文献   
88.
In account of the famous ebyev inequality,a rich theory has appeared in the literature.We establish some new weighted ebyev type integral inequalitíes.Our proofs are of independent interest and provide new estimates on these types of inequalities.  相似文献   
89.
The interaction of the antidepressant drug nortriptyline hydrochloride (NOT) with the surface-active ionic liquid (SAIL), 1-decyl-3-methylimidazolium chloride, [C10mim][Cl], has been studied using multiple techniques, including conductometric titration, tensiometric, fluorometric, dynamic light scattering and UV–visible spectrophotometric measurements. There is a significant decrease in the cmc of SAIL on the addition of the drug NOT, indicating adsorption of drug molecules in the outer portion of the micelle. In the present study, the values of the packing parameter, P, lie in the range of 0–0.3, which suggests that the micelles formed are spherical in nature. More negative values of the standard Gibbs energy of adsorption, \( \Delta G_{\text{ad}}^{ \circ } \), compared to \( \Delta G_{\text{m}}^{ \circ } \) support our contention that adsorption of SAIL on the air-solution interface is relatively more favorable than its micellization in the presence of NOT. Fluorescence and DLS studies indicate that the aggregation number, Nagg, and hydrodynamic radius of SAIL increase with increase in concentration of NOT. The UV–visible spectroscopic study confirms the formation of a new complex between SAIL and NOT; this is also supported by the negative Gibbs energy of complexation.  相似文献   
90.
Toll/IL1 receptor (TIR) adaptor proteins continue to be an integral part of Toll-like receptors’ (TLR) signalling involved in inflammation. Signalling is likely to be initiated by these TIR adaptors when they are recruited to a TIR–TIR interface formed by TLR dimerization. Among these, myeloid differentiation factor-88 (MyD88), MyD88 adapter-like protein (Mal), TIR domain-containing adaptor protein inducing interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM) play pivotal roles at many steps in the signalling events leading to inflammation. The presence of the conserved BB loop residues in the TIR domain of all these important adaptor proteins make them possible targets for inhibition by synthetic compounds. We have designed compounds based on an already known MyD88 TIR dimerization inhibitor, T6167923, which binds well not only to the original target but also to the TIR domains of Mal, TRIF and TRAM. The designed inhibitors are based on modifications of the bromophenyl-sulphonyl-thiophenyl-piperazine-carboxamide series of compounds. We have further suggested modifications in these high-affinity compounds for efficient absorption inside the body. Further, a pharmacophore model highlighting important structural interaction features has been developed. The screened compounds are better in binding to the TIR proteins then the parent compound and hence are good starting points for multi-TIR inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号