首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   31篇
  国内免费   1篇
化学   330篇
晶体学   3篇
力学   16篇
数学   77篇
物理学   117篇
  2023年   10篇
  2022年   17篇
  2021年   19篇
  2020年   20篇
  2019年   23篇
  2018年   20篇
  2017年   20篇
  2016年   29篇
  2015年   28篇
  2014年   20篇
  2013年   37篇
  2012年   38篇
  2011年   43篇
  2010年   34篇
  2009年   28篇
  2008年   33篇
  2007年   29篇
  2006年   15篇
  2005年   25篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1965年   1篇
排序方式: 共有543条查询结果,搜索用时 0 毫秒
11.
Supramolecular gels formed by the self-assembly of organic molecules are useful in many areas from materials to medicine. Of the different applications, exploitation of gels for the visual detection of analytes is a fairly recent trend in gel chemistry. Most of the gel-based sensors rely on non-covalent interactions between the gelator molecules and the added chemical analytes and therefore, often suffer from less selectivity and long response time. In this context, dosimetric gelator probes are superior to other gel-based sensors with high selectivity and fast response time. Unlike non-covalent binding sites, dosimetric gelators typically contain a reaction centre and undergo a specific chemical reaction selective to an analyte resulting in either formation or rupturing of covalent bonds. In this review, we provide an up-to-date report of various reaction-based gel systems applied for the sensing of analytes. We elaborately discuss the concept, design principles, self-assembly properties, and reaction mechanisms of such gelators. We also highlight the limitations, challenges, and the necessity of further exploration of dosimetric gels in this domain.  相似文献   
12.
The current investigation involves a continuous adsorption experiment in a packed bed column for the sorptive elucidation of fluoride from contaminated groundwater using an activated soil-clay mixture. Through the combination of naturally accessible laterite soil with silica enriched clay (3:1 ratio), a low-cost Al–Si heterogeneous material has been developed. Following detailed characterization, the developed materials were employed in a long-time column process to achieve a high degree of fluoride separation from real-world groundwater. In a packed bed column investigation, the effect of bed height, initial fluoride concentration, and flow rate on the breakthrough properties of the adsorption system were investigated. By using a non-linear regression equation, three model kinetics, such as the Thomas Model, Adams-Bohart Model, and Yoon-Nelson Model, were fitted to validate the column-based experimental data, by analysing the breakthrough curves profiles, and distinct kinetic parameters. The Bed Depth Service Time Analysis (BDST) model was tested to express the effect of bed height on breakthrough curves, as well as to predict the time for breakthrough, and material depletion under optimal conditions. The Thomas and Yoon-Nelson models were identified to be the most appropriate ones for describing the entire breakthrough curve, whereas the Adams-Bohart model was only utilised to predict the first half of the dynamic process. With correlation coefficients (R2) 0.96, the experimental results were well suited to Thomas, Yoon-Nelson, and Adams-Bohart models. Finally, regeneration assessment was carried out where even after four cycles of operation, regenerated adsorbent showed a rejection efficacy of 78% to fluoride that proves the viability of the material and methodology.  相似文献   
13.
We present herein a short tripeptide sequence (Lys–Phe–Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self‐assembles in water and shows a reversible and concentration‐dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH 7.4 but rupture rapidly at pH≈6. The pH‐sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug‐sensitive and drug‐resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence‐activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.  相似文献   
14.
Endophytes, being the co-evolution partners of green host plants, are factories of pharmaceutically valuable novel natural products. Cochliobolus sp. APS1, an endophyte of Andrographis paniculata (Green Chiretta), produces a plethora of natural bioactive compounds and the multipotent alkaloid Aziridine, 1-(2-aminoethyl)-, is the prime one among them. The isolate exhibited antibacterial, anti-biofilm, and antilarval potency. The MIC and MBC values of the ethyl-acetate culture extract ranged from 15.62 to 250 µg/mL against ten pathogenic microorganisms (including MRSA and VRSA). Killing kinetics data along with the leakage of macromolecules into the extracellular environment supports the cidal activity of the antibacterial principles. The broad spectrum antibacterial activity of Aziridine, 1-(2-aminoethyl)-, was optimized by a one-variable-at-a-time system coupled with response surface methodology, which led to a 45% enhancement of the antibacterial activity. The maximum response (22.81 ± 0.16 mm of zone of inhibition against MRSA) was marked in 250 mL Erlenmeyer flask containing 90 mL potato dextrose broth supplemented with (g%/L) glucose, 9.7; urea concentration, 0.74; with medium pH 6.48; after 8.76 days of incubation at 26 °C. APS1 strongly inhibited biofilm formation in the tested pathogenic microorganisms and acts as a larvicidal agent against the Dengue-vector Aedes aegypti. This is probably the first report of Aziridine, 1-(2-aminoethyl)-, from any endophytic source. Cochliobolus sp. APS1 possesses industrial importance for the production of bioactive alkaloids.  相似文献   
15.

Control interventions and farming knowledge are equally important for plant disease control. In this article, a mathematical model has been derived using saturated response functions (nonlinear infection rate) for studying the dynamics of mosaic disease with farming awareness based roguing (removal of infected plants) and insecticide spraying . It is assumed that the use of roguing and spraying depend on the level of awareness about the disease. The model possesses three equilibria namely the trivial, which is always unstable, the disease-free equilibrium which is stable if the basic reproduction number is below unity and the coexisting which may be stable or can exhibit Hopf-bifurcation under certain condition. Finally, we have opted an optimal control problem introducing three control parameters for determining the optimal level of roguing, spraying and cost regarding media awareness for cost-effective control of mosaic disease. Numerical simulations establish the main results suggesting that the awareness campaigns through radio, TV advertisement are important for eradication of the disease. Also, awareness campaign, roguing and spraying should be incorporated with optimal level for cost effective control of mosaic disease.

  相似文献   
16.
Synthesis of core @ shell (Au @ Ag) nanoparticle with varying silver composition has been carried out in aqueous poly vinyl alcohol (PVA) matrix. Core gold nanoparticle (~15 nm) has been synthesized through seed-mediated growth process. Synthesis of silver shell with increasing thickness (~1–5 nm) has been done by reducing Ag+ over the gold sol in the presence of mild reducing ascorbic acid. Characterization of Au @ Ag nanoparticles has been done by UV–Vis, High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) spectroscopic study. The blue shift of surface plasmon resonance (SPR) band with increasing mole fraction of silver has been interpreted due to dampening of core, i.e. Au SPR by Ag. The dependence of nonlinear optical response of spherical core @ shell nanoparticles has been investigated as a function of relative composition of each metal. Simulation of SPR extinction spectra based on quasi-static theory is done. A comparison of our experimental and the simulated extinction spectra using quasi-static theory of nanoshell suggests that our synthesized bimetallic particles have core @ shell structure rather than bimetallic alloy particles.  相似文献   
17.
A comparative study on the energy dispersive X‐ray fluorescence analytical results of uranium determinations, in uranium and uranium–thorium mixed oxides, using specimens in the form of fused beads and pressed pellets, has been made. It was observed that in case of fusion bead specimens, the intensity of the analyte lines was approximately 1.6 times of that observed in pellet specimens under identical instrumental conditions. In case of uranium oxide samples, the analytical results with bead specimens were slightly better compared with the pellet specimens. However, in case of the uranium–thorium oxide mixtures, the average precision obtained with bead specimen was significantly better (1%, 1 s) in comparison with that achieved using pellet specimens (7%, 1 s). This difference may be due to the hardness of thorium oxide compared with uranium oxide, which affects the homogeneity of the pellet specimens prepared. In fusion bead method of sample preparation, even highly refractory material like ThO2 forms uniform glass beads. Addition of internal standard further improves the analytical results, with reduction in the percent deviation of energy dispersive X‐ray fluorescence results from the expected values to 3% from 7% compared with that obtained using without internal standard. The fusion bead method of sample preparation will be very useful for characterization of sintered (U,Th)O2 pellets, which are highly refractory and difficult to dissolve. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
In this paper, time‐splitting spectral approximation technique has been proposed for Chen‐Lee‐Liu (CLL) equation involving Riesz fractional derivative. The proposed numerical technique is efficient, unconditionally stable, and of second‐order accuracy in time and of spectral accuracy in space. Moreover, it conserves the total density in the discretized level. In order to examine the results, with the aid of weighted shifted Grünwald‐Letnikov formula for approximating Riesz fractional derivative, Crank‐Nicolson weighted and shifted Grünwald difference (CN‐WSGD) method has been applied for Riesz fractional CLL equation. The comparison of results reveals that the proposed time‐splitting spectral method is very effective and simple for obtaining single soliton numerical solution of Riesz fractional CLL equation.  相似文献   
19.
Prevalent visualization tools exploit gray value distribution in images through modified histogram equalization and matching technique, referred to as the window width/window level-based method, to improve visibility and enhance diagnostic value. The window width/window level tool is extensively used in magnetic resonance (MR) images to highlight tissue boundaries during image interpretation. However, the identification of different regions and distinct boundaries between them based on gray-level distribution and displayed intensity levels is extremely difficult because of the large dynamic range of tissue intensities inherent in MR images. We propose a soft-segmentation visualization scheme to generate pixel partitions from the histogram of MR image data using a connectionist approach and then generate selective visual depictions of pixel partitions using pseudo color based on an appropriate fuzzy membership function. By applying the display scheme in clinical examples in this study, we could demonstrate additional overlapping regions between distinct tissue types in healthy and diseased areas (in the brain) that could help improve the tissue characterization ability of MR images.  相似文献   
20.
We studied self-propagated combustion synthesis of transition-metal-doped tetragonal ZrO2 (t-ZrO2) with first principles-based one-dimensional diffusion reaction model. The optimal reaction condition for the combustion process was investigated by calculating energetic stability and surface reactivity of oxygen vacancy defects on (101) surface termination of t-ZrO2 using first-principles density functional methods. In the first-principles model, the surface was doped with 14 different metal impurities in the 4th and 5th row of the periodic table to examine the role of transition-metal doping on the combustion process. Results indicate that there are clear trends in the defect stability and reactivity depending upon the type of metal impurity and their relative location with respect to the oxygen vacancy. Surface density of states and charge density information also show that there is a trade-off between the vacancy stability and chemical activity of the surface defect states. Based on the thermodynamic information obtained from first principles, we analyze the combustion process of a Zr metal particle by using a one-dimensional diffusion-reaction model. The competition between the vacancy-assisted chemisorption and the vacancy diffusion results in an optimal point for rate of combustion reaction with respect to the vacancy stability. From this, we suggest a plausible screening strategy for metal-doping which can be applied at different temperatures and pressures, as well as with different particle sizes. Our analysis indicates that first-principles calculation provides key information that can be subsequently used for an optimization of the reaction rate for a self-sustained combustion process. An explicit inclusion of rates of defect and ionic transport will be introduced into our model in future work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号