全文获取类型
收费全文 | 497篇 |
免费 | 9篇 |
国内免费 | 1篇 |
专业分类
化学 | 417篇 |
晶体学 | 3篇 |
力学 | 12篇 |
数学 | 32篇 |
物理学 | 43篇 |
出版年
2023年 | 5篇 |
2022年 | 16篇 |
2021年 | 9篇 |
2020年 | 6篇 |
2019年 | 9篇 |
2018年 | 6篇 |
2017年 | 2篇 |
2016年 | 8篇 |
2015年 | 15篇 |
2014年 | 18篇 |
2013年 | 28篇 |
2012年 | 33篇 |
2011年 | 40篇 |
2010年 | 26篇 |
2009年 | 23篇 |
2008年 | 41篇 |
2007年 | 35篇 |
2006年 | 45篇 |
2005年 | 36篇 |
2004年 | 24篇 |
2003年 | 23篇 |
2002年 | 20篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 7篇 |
1998年 | 6篇 |
1996年 | 8篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 3篇 |
排序方式: 共有507条查询结果,搜索用时 15 毫秒
41.
An improved capillary electrophoresis method for in vitro monitoring of the challenging early steps of Aβ1–42 peptide oligomerization: Application to anti‐Alzheimer's drug discovery 下载免费PDF全文
Dimitri Brinet Julia Kaffy Farid Oukacine Sarah Glumm Sandrine Ongeri Myriam Taverna 《Electrophoresis》2014,35(23):3302-3309
We report an improved CE method to monitor in vitro the self‐assembly of monomeric amyloid β‐peptide (42 amino acids amyloid β‐peptide, Aβ1–42) and in particular the crucial early steps involved in the formation of the neurotoxic oligomers. In order to start the kinetics from the beginning, sample preparation was optimized to provide samples containing exclusively the monomeric form. The CE method was also improved using a dynamic coating and by reducing the separation distance. Using this method, the disappearance of the monomer as well as the progressive formation of four species during the self‐assembly process can now be monitored and quantified over time. The hydrodynamic radius of the species present at the initial kinetics step was estimated around 1.8 nm by Taylor dispersion analysis while SDS‐PAGE analyses showed the predominance of the monomer. These results confirmed that the Aβ1–42 species present at this initial time was the monomer. Methylene blue, an anti‐Alzheimer disease candidate, was then evaluated. In spite of an oligomerization inhibition, the enhanced disappearance of the Aβ1–42 monomer provoked by methylene blue was demonstrated for the first time. This method, allowing the monomeric and smallest oligomeric species to be monitored, represents a new accurate and precise way to evaluate compounds for drug discovery. 相似文献
42.
Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions 下载免费PDF全文
Luca Assumma Cristina Iojoiu Régis Mercier Sandrine Lyonnard Huu Dat Nguyen Emilie Planes 《Journal of polymer science. Part A, Polymer chemistry》2015,53(16):1941-1956
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956 相似文献
43.
Ming Xu Sandrine Frelon Olivier Simon Ryszard Lobinski Sandra Mounicou 《Analytical and bioanalytical chemistry》2014,406(4):1063-1072
A non-denaturating isoelectric focusing (ND-IEF) gel electrophoresis protocol has been developed to study and identify uranium (U)–protein complexes with laser ablation–inductively coupled plasma mass spectrometry (LA-ICP MS) and electrospray ionization mass spectrometry (ESI-MS). The ND-IEF-LA-ICP MS methodology set-up was initiated using in vitro U–protein complex standards (i.e., U–bovine serum albumin and U–transferrin) allowing the assessment of U recovery to 64.4?±?0.4 %. This methodology enabled the quantification of U–protein complexes at 9.03?±?0.23, 15.27?±?0.36, and 177.31?±?25.51 nmol U L?1 in digestive gland cytosols of the crayfish, Procambarus clarkii, exposed respectively to 0, 0.12, and 2.5 μmol of waterborne depleted U L?1 during 10 days. ND-IEF-LA-ICP MS limit of detection was 19.3 pmol U L?1. Elemental ICP MS signals obtained both in ND-IEF electropherograms and in size exclusion chromatograms of in vivo U–protein complexes revealed interactions between U- and Fe- and Cu-proteins. Moreover, three proteins (hemocyanin, pseudohemocyanin-2, and arginine kinase) out of 42 were identified as potential uranium targets in waterborne-exposed crayfish cytosols by microbore reversed phase chromatography coupled to molecular mass spectrometry (µRPC-ESI-MS/MS) after ND-IEF separation. Figure
The paper presents the development of a non-denaturating protocol for the separation of uranium-protein complexes by isoelectric focusing gel electrophoresis (ND-IEF) before their quantitative detection by Laser Ablation coupled to Inductively Coupled Plasma Mass Spectrometry. Potential protein targets of uranium are subsequently identified by liquid chromatography - electrospray mass spectrometry 相似文献
44.
Optimization of Experimental Parameters to Explore Small‐Ligand/Aptamer Interactions through Use of 1H NMR Spectroscopy and Molecular Modeling 下载免费PDF全文
Dr. Florence Souard Dr. Sandrine Perrier Dr. Vincent Noël Dr. Claire Fave Emmanuelle Fiore Prof. Eric Peyrin Prof. Julian Garcia Dr. Cécile Vanhaverbeke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(44):15740-15748
Aptamers constitute an emerging class of molecules designed and selected to recognize any given target that ranges from small compounds to large biomolecules, and even cells. However, the underlying physicochemical principles that govern the ligand‐binding process still have to be clarified. A major issue when dealing with short oligonucleotides is their intrinsic flexibility that renders their active conformation highly sensitive to experimental conditions. To overcome this problem and determine the best experimental parameters, an approach based on the design‐of‐experiments methodology has been developed. Here, the focus is on DNA aptamers that possess high specificity and affinity for small molecules, L ‐tyrosinamide, and adenosine monophosphate. Factors such as buffer, pH value, ionic strength, Mg2+‐ion concentration, and ligand/aptamer ratio have been considered to find the optimal experimental conditions. It was then possible to gain new insight into the conformational features of the two ligands by using ligand‐observed NMR spectroscopic techniques and molecular mechanics. 相似文献
45.
Gruber-Woelfler H Rivillon Amy S Chabal YJ Schitter G Polo E Ringwald M Khinast JG 《Chemical communications (Cambridge, England)》2008,(11):1329-1331
A tethered ethylenebis(indenyl) zirconocene was covalently immobilized on H-terminated Si(111) surfaces using UV-mediated alkene hydrosilylation, thus making possible the development of structured catalytic surfaces with highly controlled properties. 相似文献
46.
Many natural products of biological interest contain [6,5]- and [6,6]-spiroketal moieties that can adopt various configurations, benefiting or not from anomeric conformation stabilizing effects. The spiroketal fragments are often important for the biological activity of the compounds containing them. Most stable spiroketal stereoisomers, including those benefiting from conformational anomeric effects (gauche conformers can be more stable than anti conformers because of a contra-steric stabilizing effect), are obtained easily under acidic conditions that permit acetal heterolysis (formation of tertiary oxycarbenium ion intermediates). The synthesis of less stable stereoisomers requires stereoselective acetal forming reactions that do not permit their equilibration with their most stable stereoisomers or, in the case of suitably substituted derivatives, concomitant reactions generating tricyclic products that quench the less stable spiroketal conformers. Ingenuous approaches have been recently developed for the synthesis of naturally occurring [6,6]- and [5,6]-nonanomeric spiroketals and analogues. The identification of several parameters that can influence the stereochemical outcome of spirocyclization processes has led to seminal improvements in the selective preparation of the non-anomeric isomers that are discussed herein. This review also gives an up-dated view of conformational anomeric effect which represents a small fraction of the enthalpic anomeric effect that makes gem-dioxy substituted compounds much more stable that their 1,n-dioxy substituted isomers (n > 1). Although models assuming sp3-hybridized oxygen atoms have been very popular (rabbit ears for the two non-bonding electron pairs of oxygen atom), sp2-hybridized oxygen atoms are used to describe the conformational anomeric effect. 相似文献
47.
48.
Laurence Muhr Steve Pontvianne Katalin Selmeczi Cdric Paris Sandrine Boschi‐Muller Laetitia Canabady‐Rochelle 《Journal of separation science》2020,43(11):2031-2041
Some metal‐chelating peptides have antioxidant properties, with potential nutrition, health, and cosmetics applications. This study aimed to simulate their separation on immobilized metal ion affinity chromatography from their affinity constant for immobilized metal ion determined in surface plasmon resonance, both technics are based on peptide‐metal ion interactions. In our approach, first, the affinity constant of synthetic peptides was determined by surface plasmon resonance and used as input data to numerically simulate the chromatographic separation with a transport‐dispersive model based on Langmuir adsorption isotherm. Then, chromatographic separation was applied on the same peptides to determine their retention time and compare this experimental tR with the simulated tR obtained from simulation from surface plasmon resonance data. For the investigated peptides, the relative values of tR were comparable. Hence, our study demonstrated the pertinence of such numerical simulation correlating immobilized metal ion affinity chromatography and surface plasmon resonance. 相似文献
49.
Perruchas S Boubekeur K Canadell E Misaki Y Auban-Senzier P Pasquier C Batail P 《Journal of the American Chemical Society》2008,130(11):3335-3348
A series of 2D metals, beta-(BDT-TTP)6[Re6Se6Cl8] x (CHCl2-CHCl2)2, 2; beta-(ST-TTP)6[Re6S6Cl8] x (CH2Cl-CHCl2)2, 3; beta-(BDT-TTP)7[Re6S6Cl8]0.5[Re6S7Cl7]0.5 x (CH2Cl2), 4; beta-(BDT-TTP)7[Re6Se6Cl8]0.5[Re6S7Cl7]0.5 x (CH2Cl2), 5; beta-(BDT-TTP)8[Re6S7Cl7] x (CH2Cl2)4, 6 (BDT-TTP and ST-TTP are 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene and 2-(1,3-diselenol-2-ylidene)-5(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene, respectively) is reported to have one single beta-slab layered topology despite successive increases of the cluster anion negative charge. The charge density within the templating composite inorganic-neutral molecule slab is shown to remain above a threshold of ca. one negative charge per square nanometer, that is, for cluster anions with two negative charges and higher. Conversely, discrete stacks are shown to be stabilized instead in the semiconducting salts (BDT-TTP)2[Re6S5Cl9], 1 where the cluster anion bears one negative charge only. The electronic structure of salts 2-6 is shown to be very stable and kept almost intact across the series. The templating strategy is shown to fulfill its anticipated potential for deliberate installment of incommensurate band fillings in molecular metals. The deliberate admixture of the 6:1 and 8:1 structures yields novel phases with a 7:1 stoichiometry with the anticipated crystal and electronic structures. The action at the organic-inorganic interface triggered by changing the anion charge yet keeping its shape and volume identical, which ultimately governs the shape of the unit cell, is of paramount importance in defining the Fermi surface of these metallic salts. The present BDT-TTP salts thus provide a series of materials with strongly related but subtly different Fermi surfaces worthy of many physical studies. Shubnikov-de Haas measurements are expected to be particularly interesting since they are especially sensitive to the details of the Fermi surface. 相似文献
50.
Jérémy Vuilleumier Geoffrey Gaulier Raphaël De Matos Yannick Mugnier Gabriel Campargue Jean-Pierre Wolf Luigi Bonacina Sandrine Gerber-Lemaire 《Helvetica chimica acta》2020,103(1):e1900251
While chemotherapy is one of the most used treatments in oncology, the systemic administration of chemotherapeutics generally results in undesired damages to healthy tissues and cells, side effects such as severe nausea and leukopenia, and reduced efficacy due to multidrug resistance and poor target accessibility. The limitations of conventional chemotherapy formulation have prompted the development of alternative nanomaterials-based strategies to achieve targeted and stimuli sensitive payload delivery to reach optimal local drug concentration at tumor sites. In this study, the anticancer drug chlorambucil (Clb) was conjugated to the surface of silica coated lithium niobate (LNO) harmonic nanoparticles (HNPs) using a photocaging tether based on coumarin-4-yl methyl derivative. Upon laser pulsed femtosecond irradiation at 790 nm, the second harmonic emission from the metal oxide core induced the efficient release of Clb, with concomitant contribution from the nonlinear absorption of the coumarin (CM)-based moiety. 相似文献