首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2320篇
  免费   104篇
  国内免费   9篇
化学   1946篇
晶体学   12篇
力学   25篇
数学   221篇
物理学   229篇
  2023年   24篇
  2022年   31篇
  2021年   68篇
  2020年   48篇
  2019年   59篇
  2018年   40篇
  2017年   37篇
  2016年   82篇
  2015年   85篇
  2014年   82篇
  2013年   117篇
  2012年   150篇
  2011年   201篇
  2010年   119篇
  2009年   109篇
  2008年   152篇
  2007年   153篇
  2006年   114篇
  2005年   121篇
  2004年   100篇
  2003年   93篇
  2002年   74篇
  2001年   37篇
  2000年   20篇
  1999年   34篇
  1998年   17篇
  1997年   13篇
  1996年   23篇
  1995年   23篇
  1994年   21篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   19篇
  1989年   15篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   15篇
  1984年   9篇
  1983年   5篇
  1982年   12篇
  1980年   8篇
  1979年   12篇
  1978年   9篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1970年   2篇
  1967年   2篇
排序方式: 共有2433条查询结果,搜索用时 31 毫秒
271.
Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.  相似文献   
272.
A synthetic approach is presented for the synthesis of galacturonic acid and D-fucosyl modified KRN7000. The approach allows for late-stage functionalisation of both the sugar 6'-OH and the sphingosine amino groups, which enables convenient synthesis of promising 6'-modified KRN7000 analogues.  相似文献   
273.
Nonactivated trienes and aryltrienes were cyclized into polycyclic compounds in good to excellent yields under bismuth triflate catalysis in a biomimetic fashion. The reaction showed broad applicability and allowed for the formation of functionalized bicyclic to tetracyclic structures from simple precursors in one pot. For some specific substrates, the cyclization was followed by a methyl shift as encountered in terpenoid biosynthesis.  相似文献   
274.
Phenyliodine(III) bis(trifluoroacetate) (PIFA) in conjunction with a Lewis acid promotes C-C coupling of Bodipy monomers leading to mixtures of various oligomers. When a single position is blocked with an iodo or phenyl group, formation of the dimer is favored. These dimers display two successive oxidation and two reduction waves separated on average by 260 and 130 mV, respectively, corresponding to each Bodipy subunit.  相似文献   
275.
An indole-templated ring-closing metathesis has been used to create the central nine-membered ring of the cleavamine-type alkaloids. A subsequent intramolecular vinyl halide Heck reaction upon the resulting azacyclononene ring completes the assembly of the strained 1-azabicyclo[6.3.1]dodecane framework of the alkaloids. The usefulness of the approach is illustrated with the synthesis of (±)-cleavamine and (±)-dihydrocleavamine.  相似文献   
276.
Wavelet packets provide an algorithm with many applications in signal processing together with a large class of orthonormal bases of L 2(ℝ), each one corresponding to a different splitting of L 2(ℝ) into a direct sum of its closed subspaces. The definition of wavelet packets is due to the work of Coifman, Meyer, and Wickerhauser, as a generalization of the Walsh system. A question has been posed since then: one asks if a (general) wavelet packet system can be an orthonormal basis for L 2(ℝ) whenever a certain set linked to the system, called the “exceptional set” has zero Lebesgue measure. This answer to this question affects the quality of wavelet packet approximation. In this paper we show that the answer to this question is negative by providing an explicit example. In the proof we make use of the “local trace function” by Dutkay and the generalized shift-invariant system machinery developed by Ron and Shen.  相似文献   
277.
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.  相似文献   
278.
This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.  相似文献   
279.
The present work reports on the synthesis and evaluation of a crosslinkable thiolated gelatin derivative. The effect of varying two parameters including the pH of the reaction buffer and the thiolating agent applied (i.e. N-acetylhomocysteine thiolactone versus Traut’s reagent) on the obtained modification degree was studied in a first part. The gelatin derivatives synthesized starting from N-acetylhomocysteine thiolactone and Traut’s reagent were characterized in depth using size exclusion chromatography and UV–VIS spectrophotometry. In a subsequent part of the present work, hydrogel films were prepared starting from the thiolated gelatin derivative developed using N-acetylhomocysteine thiolactone. The contributions of both the chemical and the physical crosslinking of the hydrogels developed were studied in depth using rheology, swelling experiments and texturometry. The results indicate that the physical structuring, inherent to gelatin, contributes to a large extent to the mechanical properties. However, the chemical crosslinking mostly determines the final hydrogel properties and can be controlled to a large extent. The gelatin-based gels are flexible, strong and transparent. A major advantage of disulfide-crosslinked hydrogels is the fact that the crosslinking is reversible. The latter could be interesting in view of future applications as cell carriers for tissue engineering.  相似文献   
280.
The interaction of gum arabic (GA) with chitosan (Ch) of different degree of deacetylation was studied by turbidity measurements, dynamic light scattering and atomic force microscopy. The structure of the complexes was found to be directly related to the charge density of chitosan molecules. Gum arabic and chitosan with a degree of deacetylation of 75% form soluble complexes with a loosely globular structure of about 250 nm, at weight ratios up to 1.2, if the concentrations are kept low (total biopolymer concentration up to 0.06%). If chitosan has a higher charge density (degree of deacetylation of 93%), colloidal particles are formed, independently of the polymer concentration or ratio. At low concentrations and GA/Ch ratios of 1 or 1.2, the particles have diameters of 200-250 nm. The formation of soluble complexes is attributed to a chitosan lower charge density and the presence of non-charged monomers, which prevent the efficient self-assembly of the macromolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号