首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2356篇
  免费   81篇
  国内免费   9篇
化学   1961篇
晶体学   12篇
力学   25篇
数学   221篇
物理学   227篇
  2023年   24篇
  2022年   45篇
  2021年   68篇
  2020年   48篇
  2019年   59篇
  2018年   40篇
  2017年   37篇
  2016年   81篇
  2015年   85篇
  2014年   82篇
  2013年   116篇
  2012年   150篇
  2011年   201篇
  2010年   119篇
  2009年   109篇
  2008年   152篇
  2007年   153篇
  2006年   114篇
  2005年   121篇
  2004年   100篇
  2003年   93篇
  2002年   74篇
  2001年   37篇
  2000年   20篇
  1999年   34篇
  1998年   17篇
  1997年   13篇
  1996年   23篇
  1995年   23篇
  1994年   21篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   19篇
  1989年   15篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   15篇
  1984年   9篇
  1983年   5篇
  1982年   12篇
  1980年   8篇
  1979年   12篇
  1978年   9篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1970年   2篇
  1967年   2篇
排序方式: 共有2446条查询结果,搜索用时 15 毫秒
81.
The selectivity of capillary columns coated with biscyanopropyl siloxane stationary phases for the separation of fatty acid methyl esters has been optimized by means of computer-assisted column temperature optimization software. Temperature programming rates yielding the highest resolution in the shortest analysis time were selected for split, splitless, and on-column injection operated in the constant pressure and pressure programmed modes.  相似文献   
82.
Due to their high polarity and unique selectivity, cyanopropyl silicones are basic stationary phases for high resolution capillary gas chromatography. Different OH-terminated cyanopropyl silicones, containing a high cyanopropyl content, were synthesized and chromatographically evaluated. Special attention was paid to the degree of immobilization of the phases in FSOT columns. Depending on the problem at hand, a choice has to be made between immobilization and maximum selectivity.  相似文献   
83.
The present work describes the development of a nanocomposite system and its application in construction of a new amperometric biosensor applied in the determination of total polyphenolic content from propolis extracts. The nanocomposite system was based on covalent immobilization of laccase on functionalized indium tin oxide nanoparticles and it was morphologically and structural characterized. The casting of the developed nanocomposite system on the surface of a screen-printed electrode was used for biosensor fabrication. The analytical performance characteristics of the settled biosensor were determined for rosmarinic acid, caffeic acid and catechol (as laccase specific substrate). The linearity was obtained in the range of 1.06×10?6 ? 1.50×10?5 mol L?1 for rosmarinic acid, 1.90×10?7 ? 2.80×10?6 mol L?1 for caffeic acid and 1.66×10?6 ? 7.00×10?6 mol L?1 for catechol. A good sensitivity of amperometric biosensor 141.15 nA µmol?1 L?1 and fair detection limit 7.08×10?8 mol L?1 were obtained for caffeic acid. The results obtained for polyphenolic content of propolis extracts were compared with the chromatographic data obtained by liquid-chromatography with diode array detection.   相似文献   
84.
Many studies focused on the discovery of novel biomarkers for the diagnosis and treatment of disease states are facilitated by mass spectrometry-based technology. HPLC coupled to mass spectrometry is widely used; miniaturization of this technique using nano-liquid chromatography (LC)-mass spectrometry (MS) usually results in better sensitivity, but is associated with limited repeatability. The recent introduction of chip-based technology has significantly improved the stability of nano-LC-MS, but no substantial studies to verify this have been performed. To evaluate the temporal repeatability of chip-based nano-LC-MS analyses, N-glycans released from a serum sample were repeatedly analyzed using nLC-PGC-chip-TOF-MS on three non-consecutive days. With an average inter-day coefficient of variation of 4 %, determined on log10-transformed integrals, the repeatability of the system is very high. Overall, chip-based nano-LC-MS appears to be a highly stable technology, which is suitable for the profiling of large numbers of clinical samples for biomarker discovery.  相似文献   
85.
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor–acceptor (D‐A) substituted 1,2,3‐triazoles as conjugative π‐linkers between the alkali metal ion receptor N‐phenylaza‐[18]crown‐6 and different fluorophoric groups with different electron‐acceptor properties (4‐naphthalimide, meso‐phenyl‐BODIPY and 9‐anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge‐transfer (CT) type probes 1 , 2 and 7 , the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge‐separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting‐up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7 , which contains a 9‐anthracenyl moiety as the electron‐accepting fluorophore, is the only probe which retains light‐up features in water and works as a highly K+/Na+‐selective probe under simulated physiological conditions. Virtually decoupled BODIPY‐based 6 and photoinduced electron transfer (PET) type probes 3 – 5 , where the 10‐substituted anthracen‐9‐yl fluorophores are connected to the 1,2,3‐triazole through a methylene spacer, show strong ion‐induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3‐triazole fluoroionophores.  相似文献   
86.
87.
A new generic pyrolysis unit (PyroVial) is presented. Pyrolysis is carried out in a 2 mL autosampler vial placed in a XYZ robot for automated pyrolysis as well as for pre- and post-pyrolysis treatment of the sample. Analysis of the volatiles is performed by headspace analysis while the semi- and non-volatiles are extracted from the pyrolysate with an organic solvent. The features of the PyroVial are such that all chromatographic techniques can be applied. The pyrolysis unit is discussed in terms of its technical features and its performance is illustrated with applications including conventional pyrolysis, in situ and post-pyrolysis derivatization, reaction pyrolysis and catalytic cracking.  相似文献   
88.
Electrokinetic chromatography (EKC) allows the separation of closely related substances by the detection of fine effects in analyte-separation system interactions. With the goal of understanding the fine effects involved in separation using a dual cyclodextrin-microemulsion EKC system, an integrated study of NMR and molecular modeling was carried out. The above dual cyclodextrin-microemulsion system was previously used in the separation of clemastine and its related substances and was prepared by the addition of methyl-β-cyclodextrin (MβCD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) to an oil-in-water microemulsion. The use of DMβCD was shown to be essential in the separation of clemastine from one of its related substance (I(B) ). A molecular modeling study allowed the different affinities of clemastine and I(B) for the two cyclodextrins to be explained. Furthermore, rotating-frame Overhauser effect spectroscopy NMR experiments clearly indicated that besides the primary pseudostationary phase, namely the ionic microemulsion, cyclodextrins acted as a secondary pseudostationary phase. In addition, it was shown that inclusion complexation of sodium dodecyl sulfate (SDS) monomers into the cyclodextrins cavity occurs; differently, the oil (n-heptane) used in the preparation of microemulsion system resulted to be not included into the macrocycle cavity. These experimental results were supported by molecular modeling, which highlighted the preferential inclusion of SDS into DMβCD. On the basis of these results, it was confirmed that, besides its primary role as the ionic carrier in EKC, SDS is involved in inclusion equilibria toward CDs, which can be effective in increasing the system selectivity.  相似文献   
89.
A modular approach for the synthesis of highly ordered porous and chiral auxiliary (Evans auxiliary) decorated metal-organic frameworks is developed. Our synthesis strategy, which uses known porous structures as model materials for incorporation of chirality via linker modification, can provide access to a wide range of porous materials suitable for enantioselective separation and catalysis. Chiral analogues of UMCM-1 have been synthesized and investigated for the enantioseparation of chiral compounds in the liquid phase and first promising results are reported.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号