首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   35篇
  国内免费   1篇
化学   573篇
晶体学   7篇
力学   13篇
数学   102篇
物理学   230篇
  2023年   4篇
  2022年   7篇
  2021年   13篇
  2020年   21篇
  2019年   20篇
  2018年   11篇
  2016年   14篇
  2015年   20篇
  2014年   30篇
  2013年   26篇
  2012年   41篇
  2011年   45篇
  2010年   29篇
  2009年   20篇
  2008年   36篇
  2007年   46篇
  2006年   40篇
  2005年   41篇
  2004年   44篇
  2003年   20篇
  2002年   30篇
  2001年   17篇
  2000年   22篇
  1999年   15篇
  1998年   11篇
  1997年   12篇
  1996年   13篇
  1995年   12篇
  1994年   18篇
  1993年   12篇
  1992年   21篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   13篇
  1987年   17篇
  1986年   11篇
  1985年   23篇
  1984年   4篇
  1983年   8篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1976年   7篇
  1975年   9篇
  1974年   4篇
  1962年   3篇
排序方式: 共有925条查询结果,搜索用时 31 毫秒
51.
The benzyl radical ( 1 ) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix‐isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical ( 2 ), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]‐H migration and subsequent cleavage of the O?O bond to produce a hydrogen‐bonded complex between the hydroxyl radical and benzaldehyde ( 4 ). Prolonged photolysis produces the benzoyl radical ( 5 ) and water, which finally yield the phenyl radical ( 7 ), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7 . Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds.  相似文献   
52.
The highly strained 1H‐bicyclo[3.1.0]‐hexa‐3,5‐dien‐2‐one 1 is metastable, and rearranges to 4‐oxacyclohexa‐2,5‐dienylidene 2 in inert gas matrices (neon, argon, krypton, xenon, and nitrogen) at temperatures as low as 3 K. The kinetics for this rearrangement show pronounced matrix effects, but in a given matrix, the reaction rate is independent of temperature between 3 and 20 K. This temperature independence means that the activation energy is zero in this temperature range, indicating that the reaction proceeds through quantum mechanical tunneling from the lowest vibrational level of the reactant. At temperatures above 20 K, the rate increases, resulting in curved Arrhenius plots that are also indicative of thermally activated tunneling. These experimental findings are supported by calculations performed at the CASSCF and CASPT2 levels by using the small‐curvature tunneling (SCT) approximation.  相似文献   
53.
54.
A Schiff base-like ligand bearing CF3 substituents was synthesized and converted to iron(II) coordination polymers [{FeL(Lax)}n] using five different bridging ligands Lax. The structure of the coordination polymers was investigated using powder X-ray diffraction and single-crystal X-ray diffraction in the case of [{FeL(bipy)}n]. The later revealed an untypical ABAB pattern of alternating equatorial ligands rotated by 180° with regard to each other along the chain. The temperature-dependent magnetic behavior was investigated with a SQUID magnetometer and the spin states at room temperature were confirmed by 57Fe-Mössbauer spectroscopy. Three out of five coordination polymers show spin crossover behavior in the temperature range between 50 and 400 K with different kind of curve progressions (abrupt, gradual, step-wise). The other two coordination polymers are either fully highspin or fully low spin.  相似文献   
55.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   
56.
Two new marine sediment standard reference materials (SRMs), SRM 1941b Organics in Marine Sediment and SRM 1944 New York/New Jersey Waterway Sediment, have been recently issued by the National Institute of Standards and Technology (NIST) for the determination of organic contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, and chlorinated pesticides. Both sediment SRMs were analyzed using multiple analytical methods including gas chromatography/mass spectrometry (GC/MS) on columns with different selectivity, reversed-phase liquid chromatography with fluorescence detection (for PAHs only), and GC with electron capture detection (for PCBs and pesticides only). SRM 1941b has certified concentrations for 24 PAHs, 29 PCB congeners, and 7 pesticides, and SRM 1944 has certified concentrations for 24 PAHs, 29 PCB congeners, and 4 pesticides. Reference concentrations are also provided for an additional 58 (SRM 1941b) and 39 (SRM 1944) PAHs, PCB congeners, and pesticides. SRM 1944, which was collected from multiple sites within New York/New Jersey coastal waterways, has contaminant concentrations that are generally a factor of 10–20 greater than SRM 1941b, which was collected in the Baltimore (Maryland) harbor. These two SRMs represent the most extensively characterized marine sediment certified reference materials available for the determination of organic contaminants.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
57.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   
58.
59.
60.
What is 'unfreezable water', how unfreezable is it,and how much is there?   总被引:1,自引:0,他引:1  
Wolfe J  Bryant G  Koster KL 《Cryo letters》2002,23(3):157-166
Water that remains unfrozen at temperatures below the equilibrium bulk freezing temperature, in the presence of ice, is sometimes called unfreezable or bound. This paper analyses the phenomenon in terms of quantitative measurements of the hydration interaction among membranes or macromolecules at freezing temperatures. These results are related to analogous measurements in which osmotic stress or mechanical compression is used to equilibrate water of hydration with a bulk phase. The analysis provides formulas to estimate, at a given sub-freezing temperature, the amount of unfrozen water due to equilibrium hydration effects. Even at tens of degrees below freezing, this hydration effect alone can explain an unfrozen water volume that considerably exceeds that of a single 'hydration shell' surrounding the hydrophilic surfaces. The formulas provided give a lower bound to the amount of unfrozen water for two reasons. First, the well-known freezing point depression due to small solutes is, to zeroth order, independent of the membrane or macromolecular hydration effect. Further, the unfrozen solution found between membranes or macromolecules at freezing temperatures has high viscosity and small dimensions. This means that dehydration of such systems, especially at freezing temperatures, takes so long that equilibrium is rarely achieved over normal experimental time scales. So, in many cases, the amount of unfrozen water exceeds that expected at equilibrium, which in turn usually exceeds that calculated for a single hydration shell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号