首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
化学   35篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   9篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1–5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology.  相似文献   
22.
23.
Dried, crushed, corncobs were carbonized at 500°C and steam activated (in one- or two-step schemes), or activated with H3PO4. The products were characterized by N2 adsorption at 77 K, using the BET, s and DR methods. Adsorption capacity was demonstrated by the iodine and phenol numbers, and the isotherms of methylene blue and Pb2+ ions, from aqueous solutions. A distribution of porosity in the carbons was estimated within the various ranges (ultra-, super-, meso- and macropores). Simple carbonization yields a poor adsorbing carbon; only its uptake for iodine was high and proposed to be due to an addition reaction on residual unsaturation of the parent lignocellulosic structures. Enhanced porosity was best associated with chemical activation and/or steam pyrolysis at 700°C. These activated carbons proved highly porous and rich in mesopores, and showed high adsorption capacity for methylene blue and Pb2+ ions. Phenol uptake was found to depend on surface chemical nature of the carbon rather than its porous properties. Corncobs were postulated to be feasible as feedstock to produce good adsorbing carbons, under the one-step activation schemes outlined here.  相似文献   
24.
Samples of polystyrene films were irradiated under vacuum at room temperature with 58Ni7+ (86 MeV) ion with fluences ranging from 1 × 1011 to 1 × 1013 ions cm−2. Ion induced structural modifications were studied by means of atomic force microscopy atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visible absorption spectroscopy (UV-Vis) and Fourier transform infrared spectroscopy (FTIR) techniques. Atomic force microscopy shows that the root mean square (RMS) roughness of the irradiated polystyrene surface increases with the increment of ion fluence. XRD analysis reveals that in addition to the increase of amorphization of polymer with the increase of ion fluence there is also an increase of ordering (to a small extent) in some of the micro-domains. These results have further been supported by the study of optical and chemical analysis. The analysis of present study shows that the increase of full width at half maximum (FWHM) of first peak of XRD spectra, decrease of optical band gap and the formation of new alkyne group may be attributed to the increase of amorphization of polystyrene. Similarly, sharpening of second X-ray diffraction peak, decrease of Urbach’s energy and increase in the absorbance ratio of I1222/I1183 may be owed to the increase of ordering in some domains.  相似文献   
25.
Reaction of phenylmalonic acid dihydrazide with 2,4-pentanedione proceeded through a novel rearrangement to give 5,7-dimethyl-1-oxo-2-phenyl-1H-pyrazolo[1,2-α]pyrazol-4-ium-3-olate (DPO). This peculiar structure had a positive charge (cation) localized on the pyrazolium ring and a negative charge localized on the other ring. The intermolecular charge-transfer complexes (CTC) formed between DPO as donor and iodine as an acceptor have been studied spectrophotometrically. Doping was done in two ways: by mixing and chemically using different ratios of I2. The suggested structures of the solid iodine charge-transfer complexes were investigated by several techniques using electronic spectra, FTIR spectroscopy and thermal analysis (TGA and DTA). DC electrical conductivity variation with temperature in the range 300–500 K after annealing for 24 h at 100°C and after doping with different ratios of I2 through the two ways of doping is determined for comparison. The activation energies were calculated and the results were interpreted using the band energy model. DC electrical conductivity of the iodine CTC increased with increasing temperature. The iodine CTC are only one or two orders of magnitude higher in DC electrical conductivity than the undoped material, however the energy gap is very small in addition to its thermal stability which suggests the use of these materials in applications like photovoltaic cells.  相似文献   
26.
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements.  相似文献   
27.
This paper is devoted to nonexistence results for solutions to the problem
((Skm))  相似文献   
28.
Modified nucleotides play a paramount role in many cutting-edge biomolecular techniques. The present structural study highlights the plasticity and flexibility of the active site of a DNA polymerase while incorporating non-polar "Click-able" nucleotide analogs and emphasizes new insights into rational design guidelines for modified nucleotides.  相似文献   
29.
Mechanical properties of model and natural gels have recently been demonstrated to play an important role in various cellular processes such as adhesion, proliferation, and differentiation, besides events triggered by chemical ligands. Understanding the biomaterial/cell interface is particularly important in many tissue engineering applications and in implant surgery. One of the final goals would be to control cellular processes precisely at the biomaterial surface and to guide tissue regeneration. In this work, we investigate the substrate mechanical effect on cell adhesion for thin polyelectrolyte multilayer (PEM) films, which can be easily deposited on any type of material. The films were cross linked by means of a water-soluble carbodiimide (EDC), and the film elastic modulus was determined using the AFM nanoindentation technique with a colloidal probe. The Young's modulus could be varied over 2 orders of magnitude (from 3 to 400 kPa) for wet poly(L-lysine)/hyaluronan (PLL/HA) films by changing the EDC concentration. The chemical changes upon cross linking were characterized by means of Fourier transform infrared spectroscopy (FTIR). We demonstrated that the adhesion and spreading of human chondrosarcoma cells directly depend on the Young's modulus. These data indicate that, besides the chemical properties of the polyelectrolytes, the substrate mechanics of PEM films is an important parameter influencing cell adhesion and that PEM offer a new way to prepare thin films of tunable mechanical properties with large potential biomedical applications including drug release.  相似文献   
30.
Photoluminescent, structural and thermal changes induced in polyvinylidenechloride (PVDC) films by irradiation with energetic silicon and oxygen ions have been determined using different techniques viz PL, FTIR, UV-vis, XRD, TGA and AFM. Noticeable photoluminescence was observed in PVDC after irradiation with 84 MeV oxygen ions at fluence 3.2×1011 ions cm−2, which is attributed to the small carbon cluster formed in the polymer due to irradiation. Quenching and shifting in the position of the PL band towards the longer wavelength side of the spectrum was observed with the increase in ion fluence. UV-vis and FTIR analysis have strongly corroborated the results of PL spectroscopy. X-ray diffractograms and TGA curves show decrease in crystallinity and weight loss, respectively, of PVDC films after irradiation. The strong correlation between the behaviors of different properties were analyzed and discussed in the present paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号