首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880篇
  免费   44篇
  国内免费   4篇
化学   669篇
晶体学   3篇
力学   32篇
数学   137篇
物理学   87篇
  2023年   7篇
  2022年   29篇
  2021年   32篇
  2020年   19篇
  2019年   30篇
  2018年   36篇
  2017年   10篇
  2016年   32篇
  2015年   37篇
  2014年   30篇
  2013年   67篇
  2012年   66篇
  2011年   60篇
  2010年   42篇
  2009年   28篇
  2008年   49篇
  2007年   63篇
  2006年   49篇
  2005年   44篇
  2004年   33篇
  2003年   31篇
  2002年   30篇
  2001年   7篇
  2000年   6篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   4篇
  1979年   5篇
  1977年   6篇
  1975年   2篇
  1973年   5篇
  1972年   3篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1955年   1篇
排序方式: 共有928条查询结果,搜索用时 15 毫秒
151.
152.
In this paper, for the first time, we report a detailed study of the temperature-dependent solvation dynamics of a probe fluorophore, coumarin-500, in AOT/isooctane reverse micelles (RMs) with varying degrees of hydration (w0) of 5, 10, and 20 at four different temperatures, 293, 313, 328, and 343 K. The average solvation time constant becomes faster with the increase in w0 values at a particular temperature. The solvation dynamics of a RM with a fixed w0 value also becomes faster with the increase in temperature. The observed temperature-induced faster solvation dynamics is associated with a transition of bound- to free-type water molecules, and the corresponding activation energy value for the w0 = 5 system has been found to be 3.4 kcal mol-1, whereas for the latter two systems, it is approximately 5 kcal mol-1. Dynamic light scattering measurements indicate an insignificant change in size with temperature for RMs with w0 = 5 and 10, whereas for a w0 = 20 system, the hydrodynamic diameter increases with temperature. Time-resolved fluorescence anisotropy studies reveal a decrease in the rotational restriction on the probe with increasing temperature for all systems. Wobbling-in-cone analysis of the anisotropy data also supports this finding.  相似文献   
153.
The purpose of this study was to determine whether temperature scanning ultrasonic velocity measurements could be used to monitor the complex thermal transitions that occur during the crystallization and melting of triglyceride solid lipid nanoparticles (SLNs). Ultrasonic velocity ( u) measurements were compared with differential scanning calorimetry (DSC) measurements on tripalmitin emulsions that were cooled (from 75 to 5 degrees C) and then heated (from 5 to 75 degrees C) at 0.3 degrees C min (-1). There was an excellent correspondence between the thermal transitions observed in deltaDelta u/delta T versus temperature curves determined by ultrasound and heat flow versus temperature curves determined by DSC. In particular, both techniques were sensitive to the complex melting behavior of the solidified tripalmitin, which was attributed to the dependence of the melting point of the SLNs on particle size. These studies suggest that temperature scanning ultrasonic velocity measurements may prove to be a useful alternative to conventional DSC techniques for monitoring phase transitions in colloidal systems.  相似文献   
154.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   
155.
156.
The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6'-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.  相似文献   
157.
de Greef M  Zard SZ 《Organic letters》2007,9(9):1773-1776
[reaction: see text] Functionalization of S-(3-chloro-2-oxo-propyl)-O-ethyl xanthate 1 by two consecutive xanthate transfer reactions, followed by spirocyclization of the resulting dihydroxy ketones, provides a flexible and highly convergent access to diversely substituted spiroketals, containing five-, six-, and seven-membered rings.  相似文献   
158.
The direct oxygen sensor protein from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of either O2 or CO molecule to a reduced heme enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report ultraviolet resonance Raman (UVRR) spectroscopic investigations of the reduced, O2- and CO-bound forms of heme-bound PAS domain of Ec DOS. The UVRR results show that heme discriminates different ligands, resulting in altered conformations in the protein moiety. Specifically, the environment around Trp53 that contacts the 2-vinyl group of heme, is changed to a more hydrophobic environment by O2 binding, whereas it is changed to a more hydrophilic environment by CO-binding. In addition, the PDE activity of the O2- and CO-bound forms for the Trp53Phe mutant is significantly decreased compared with that of the wild type (WT), demonstrating the importance of Trp53 for the catalytic reaction. On the other hand, the binding of O2 or CO to the heme produces drastic changes in the Tyr126 of Ibeta-strand at the surface of the sensor domain. Furthermore, we found that Asn84 forms a hydrogen bond with Tyr126 either in the O2- or CO-bound forms but not in the reduced form. Finally, the PDE activities of the ligand-bound forms for Asn84Val and Tyr126Phe mutants are significantly reduced as compared with that of WT, suggesting the importance of the hydrogen-bonding network from heme 6-propionate to Tyr126 through Asn84 in signal transmission.  相似文献   
159.
Human serum albumin (HSA) is known to undergo both reversible and irreversible thermal unfolding and refolding, depending upon the experimental conditions (end temperature) at neutral pH. In this report we have used high precision densimetric and ultrasonic measurements to determine the apparent specific volume (phi v) and compressibility (phi k) of HSA at different unfolded and refolded states at two different end temperatures, 55 degrees C and 70 degrees C. The unfolded and refolded states were characterized using dynamic light scattering (DLS), circular dichroism (CD), picosecond-resolved fluorescence decay, and anisotropy of the single-tryptophan residue in HSA (Trp214). Both the unfolded states were allowed to refold by cooling wherein the former and latter processes were found to be reversible and irreversible, respectively, in nature. The results obtained from the densimetric and ultrasonic measurements reveal that the apparent specific volume and compressibility of the protein in the reversible protein unfolding process is preserved upon restoration of HSA to ambient temperature. However, a significant change in phi v and phi k occurs in the process of irreversible protein refolding (from 70 to 20 degrees C). The experimental observation is rationalized in terms of the exposure of domain IIA to an aqueous environment, resulting in the swelling of the protein to a higher hydrodynamic diameter. Our studies attempt to explore the extent of hydration associated with the structural integrity of the popular protein HSA.  相似文献   
160.
In this Article, we study the development of semiconductor nanocrystals (quantum dots of average diameter less than 2 nm) directly conjugated to a transporter protein human serum albumin (HSA) as fluorescent biological labels. F?rster resonance energy transfer (FRET) from the amino acid tryptophan (Trp214) to quantum dot in HSA is monitored to follow the local and global changes in the protein structure during thermal unfolding and refolding processes. This study is likely to attract widespread attention as a powerful tool for the study of protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号