首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学   47篇
力学   1篇
数学   1篇
物理学   5篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
The microwave spectrum of 2-fluoroethylisocyanide, FCH(2)CH(2)N≡C, has been investigated in the whole 50-120 GHz spectral region. Selected portions of the spectrum in the range of 18-50 GHz have also been recorded. The microwave spectra of the ground state and vibrationally excited states of two conformers have been assigned. Accurate spectroscopic constants have been derived from a large number of microwave transitions. The F-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second conformer. The energy difference between the two forms was obtained from relative intensity measurements. It was found that the synclinal conformer is favored over the antiperiplanar form by 0.7(5) kJ/mol. Quantum chemical calculations at the high CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory were performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with the experimental counterparts. The theoretical calculations correctly indicate that the F-C-C-N dihedral angle in the synclinal form is about 67° but underestimate the magnitude of the gauche effect and erroneously predict the antiperiplanar rotamer to be 1.3-1.6 kJ/mol more stable than the synclinal conformer.  相似文献   
52.
The molecular structures of tris(dipivaloylmethanato)chromium and tris(dipivaloylmethanato)cobalt have been determined by quantum chemical calculations and gas electron diffraction. Both the experimental data and the theoretical results are consistent with molecular structures having D 3 symmetry which is in agreement with the Kepert model. The experimental bond distances, r h1(Å), and bond angles, h1(°), are: Cr–O = 1.976(5), C–O = 1.287(3), C–Cr = 1.392(6), C–Ct = 1.547(3), OCrO = 90.1(0.9), CCrC = 122.3(0.9), OCCt = 114.7(0.9) and Co–O = 1.891(4), C–O = 1.269(3), C–Cr = 1.411(5), C–Ct = 1.546(3), OCoO = 95.2(0.5), CCrC = 122.5(0.9), OCCt = 115.1(0.8).  相似文献   
53.
The molecular structure of phthalocyaninatotin(II), Sn(II)Pc, is determined by density functional theory (DFT/B3LYP) calculations using various basis sets and gas-phase electron diffraction (GED). The quantum chemical calculations show that Sn(II)Pc has C4V symmetry, and this symmetry is consistent with the structure obtained by GED at 427 degrees C. GED locates the Sn atom at h(Sn) ) 112.8(48) pm above the plane defined by the four isoindole N atoms, and a N-Sn bond length of 226.0(10) pm is obtained. Calculation at the B3LYP/ccpVTZ/cc-pVTZ-PP(Sn) level of theory gives h(Sn) ) 114.2 pm and a N-Sn bond length of 229.4 pm. The phthalocyanine (Pc) macrocycle has a slightly nonplanar structure. Generally, the GED results are in good agreement with the X-ray structures and with the computed structure; however, the comparability between these three methods has been questioned. The N-Sn bond lengths determined by GED and X-ray are significantly shorter than those from the B3LYP predictions. Similar trends have been found for C-Sn bonds for conjugated organometallic tin compounds. Computed vibrational frequencies give five low frequencies in the range of 18-54 cm-1, which indicates a flexible molecule.  相似文献   
54.
A synthetic procedure yielding a mixture of Z- and E-1-propenyl isocyanide (CH(3)CH═CHNC) is described. The microwave spectrum of this mixture has been recorded in the 12-100 GHz spectral range, and the spectra of the Z and E isomers have been assigned for the first time. Most transitions of the Z form were split into two components of equal intensity due to tunneling of the methyl group, which allowed the barrier to internal rotation of this group to be determined as 4.0124(12) kJ/mol by fitting 568 transitions with a maximum value of J = 46 using the computer program Xiam. This fit had a root-mean-square deviation as large as 4.325. The same transitions were therefore fitted anew using the more sophisticated program Erham. This fit has a rms deviation marginally better (4.136) than the Xiam fit. No split MW lines were found for E-1-propenyl isocyanide. The absence of splittings is ascribed to a barrier to internal rotation of the methyl group that is significantly higher than the barrier of the Z isomer. It is concluded that the barrier must be larger than 6 kJ/mol for the E form. The experimental work was augmented by quantum chemical calculations at CCSD/cc-pVTZ, B3LYP/cc-pVTZ, and MP2/cc-pVTZ levels of theory. The CCSD method predicts rotational constants of the Z and E forms well. The B3LYP barriers to internal rotation of a series of substituted propenes were calculated and found to be in good agreement with experiments. Calculations of the quartic centrifugal distortion constants of the two 1-propenyl isocyanides by the B3LYP and MP2 methods were less successful.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号