首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   5篇
  国内免费   3篇
化学   156篇
晶体学   3篇
力学   2篇
数学   43篇
物理学   23篇
  2024年   1篇
  2023年   4篇
  2022年   19篇
  2021年   17篇
  2020年   7篇
  2019年   10篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   22篇
  2012年   17篇
  2011年   12篇
  2010年   8篇
  2009年   12篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有227条查询结果,搜索用时 0 毫秒
41.
42.
For the first time, chloroform and 2-butanol were used as solvent systems for the preparation of ZrO2–PANI and CeO2–PANI composites. Solubility of the synthesized composites was studied in chloroform, N-methyl-2-pyrrolidinone (NMP), and in mixture of toluene?+?2-propanol (2:1). XRD and cyclic voltammetry data showed that the ZrO2–PANI and CeO2–PANI composites possess both crystalline and amorphous domains indicating some sort of conductivity. TGA results showed that ZrO2–PANI composite have a better thermal stability than pure PANI; however, CeO2–PANI composite has lower thermal stability than pure PANI. The conjugated unsaturated structure of PANI is responsible for the enhanced photocatalytic properties of ZrO2–PANI and CeO2–PANI. Photocatalytic results showed that, at photolysis time of 60 min, rhodamine B (RhB) dye was degraded up to 34 and 35% by ZrO2–PANI and CeO2–PANI, respectively. The degradation products of RhB were quantified by LC–MS and GC–MS, and accordingly, a detailed pathway was proposed.  相似文献   
43.
The objective of this study is to compare experimentally the thermal performances of two types of commercial nanofluids. The first is composed of oxides of alumina (γAl2O3) dispersed in water and the second one is aqueous suspensions of nanotubes of carbons (CNTs). The viscosity of the nanofluids is measured as a function of the temperature between 2 and 10 °C. An experimental device, containing three thermal buckles controlled in temperature and greatly instrumented permits to study the thermal convective transfers. The evolution of the convective coefficient permits to study the convective thermal transfers. The evolution of the convective coefficient is presented according to the Reynolds number, at low temperature from 0 to 10 °C and for the two aforementioned nanofluids. An assessment of the pressure drops in the circuit as well as of the powers of the circulator and outputs is dealt with.  相似文献   
44.
Summary [RuCl2(CO)2] n reacts with the Schiff base 1-acetylferrocenethiosemicarbazone, [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2(CO)2] and with 1-acetylferrocenesemicarbazone [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2-(CO) 2]. Spectroscopic data indicate that the Schiff bases act as bidentate ligands and coordinate to ruthenium via the hydrazinic N and either the S or O atoms, respectively, giving stable heterobimetallic complexes, which have been characterized by i.r. and 1H-n.m.r. spectroscopies, and elemental analyses.Part of this work was presented at the First International Conference in Chemistry and its applications in Doha, Qatar, 1993.  相似文献   
45.
NiO is one of the most important candidates for semiconductors metal oxide nanocrystals by the arrangement of photocatalytic application. However, the photocatalytic performance of biosynthesized nanocrystals using Aspalathus linearis (Burm.f.) R. Dahlgren has not been investigated yet. In this contribution, we synthesize α-Ni(OH)2 using an A. linearis. A heat treatment of the α-Ni(OH)2 is carried out at 300–400°C for 2?h at normal air yields. Furthermore, we have characterized the structural, optical and photocatalytic activity of the samples. The optical results indicate that biosynthesized nanocrystals exhibit UV–visible light absorption and a narrow range distribution of intense green light (518.95?nm) emission, which decreases significantly as annealing temperature increases. The bandgap energies of the sample annealed at 300–400°C shift to lower photon energy, compared to bulk NiO (~ 4?eV). Moreover, the photocatalytic experimental results reveal that NiO nanocrystals enable color switching of methylene blue.  相似文献   
46.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   
47.
Reviewing the development of new polymeric materials for high temperature structural applications (T > 200°C) over the past several decades, reveals a paradox which, to date, has not been completely resolved. Polymers which exhibit very high temperature stability tend to be either intractable or brittle, whereas, easily processible polymers tend to fall short of property targets. Approaches to resolving this paradox include modification of the chain backbone chemistry and polymer blending (especially to form miscible systems). Recent research has shown that, in contrast to low temperature flexible polymers, many high temperature aromatic heterocyclic polymers form miscible systems which permit the design of the desired processibility and performance into the blend. An example of such a system is the blend of Poly(2,2′-(meta-phenylene-5,5′-bibenzimidazole) (PBI) with a series of polyamides, including commercially available polyether imide (PEI) and imide copolymers containing sulfone and fluorinated isopropylidene (6F) units. Other examples include all polyimide blends and blends of polyimides with polyethersulfone.  相似文献   
48.
Targeting the serine biosynthesis pathway enzymes has turned up as a novel strategy for anti-cancer therapeutics. 3- Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme that catalyzes the conversion of 3-Phosphoglyceric acid (3-PG) into 3-Phosphohydroxy pyruvate (3-PPyr) in the first step of serine synthesis pathway and perform a critical role in cancer progression. PHGDH has been reported to be overexpressed in different types of cancers and emerged as a novel target for cancer therapeutics. During this study, virtual screening tools were used for the identification of inhibitors of PHGDH. A library of phenolic compounds was docked against two binding sites of PHGDH using Molegro Virtual Docker (MVD) software. Out of 169 virtually tested compounds, Salvianolic acid C and Schizotenuin F possess good binding potential to co-factor binding site of PHGDH while Salvianolic acid I and Chicoric acid were identified as the best binding compounds toward the substrate binding site of PHGDH. The top selected compounds were evaluated for different physiochemical and ADMET properties, the obtained results showed that none of these hit compounds violated the Pfizer Rule and they possess acceptable ADMET profiles. Further, a commercially available hit compound, Chicoric acid, was evaluated for its anti-cancer potential against PHGDH-expressing gastric cancer cell lines (MGC-803 and SGC-7901) as well as cell lines with low expression of PHGDH (MCF-7 and MDA-MB2-31), which demonstrated that Chicoric acid possesses selective cytotoxicity toward PHGDH expressing cancer cell lines. Thus, this study has unveiled the potential of phenolic compounds, which could serve as novel candidates for the development of PHGDH inhibitors as anti-cancer agents.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号