首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   13篇
  国内免费   2篇
化学   179篇
力学   3篇
数学   34篇
物理学   30篇
  2024年   1篇
  2022年   7篇
  2021年   8篇
  2020年   12篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   8篇
  2014年   11篇
  2013年   20篇
  2012年   17篇
  2011年   13篇
  2010年   12篇
  2009年   14篇
  2008年   11篇
  2007年   19篇
  2006年   5篇
  2005年   11篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有246条查询结果,搜索用时 0 毫秒
31.
Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.  相似文献   
32.
Advanced analytical applications require smart materials and sensor systems that are able to adapt or be configured to specific tasks. Based on reversible photochemistry in nanoporous materials, we present a sensor array with a selectivity that is reversibly controlled by light irradiation. The active material of the sensor array, or electronic nose (e-nose), is based on metal–organic frameworks (MOFs) with photoresponsive fluorinated azobenzene groups that can be optically switched between their trans and cis state. By irradiation with light of different wavelengths, the transcis ratio can be modulated. Here we use four transcis values as defined states and employ a four-channel quartz-crystal microbalance for gravimetrically monitoring the molecular uptake by the MOF films. We apply the photoprogrammable e-nose to the sensing of different volatile organic compounds (VOCs) and analyze the sensor array data with simple machine-learning algorithms. When the sensor array is in a state with all sensors either in the same trans- or cis-rich state, cross-sensitivity between the analytes occurs and the classification accuracy is not ideal. Remarkably, the VOC molecules between which the sensor array shows cross-sensitivity vary by switching the entire sensor array from trans to cis. By selectively programming the e-nose with light of different colors, each sensor exhibits a different isomer ratio and thus a different VOC affinity, based on the polarity difference between the trans- and cis-azobenzenes. In such photoprogrammed state, the cross-sensitivity is reduced and the selectivity is enhanced, so that the e-nose can perfectly identify the tested VOCs. This work demonstrates for the first time the potential of photoswitchable and thus optically configurable materials as active sensing material in an e-nose for intelligent molecular sensing. The concept is not limited to QCM-based azobenzene-MOF sensors and can also be applied to diverse sensing materials and photoswitches.

A sensor array with four identical photoresponsive azobenzene-containing metal–organic framework films is selectively irradiated. By photoprogamming the array, the sensor selectivity is switched and optimized.  相似文献   
33.
The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1–3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
34.
Metallic Zn nanowires have been synthesized by a new carbothermal reduction route in which ZnO and Eucalyptus sp. tar pitch were used as source materials. This simple practical procedure was capable of producing Zn nanowires in large quantities without reoxidation. This process was carried out in inert atmosphere, without vacuum or catalyst, at temperatures (800–900 °C) lower than those required in the carbothermal reduction of ZnO with graphite. A comparative study was performed using graphite that is traditionally used as a ZnO reducer, under the same experimental conditions, however, no reaction was observed. The new process involves the pyrolysis of biopitch to obtain a highly reactive coke and the reduction of ZnO with the release of Zn(v) for the growth of Zn(s) nanowires. The resulting Zn nanowires were characterized by X-ray diffractometry, energy-dispersive spectroscopy and scanning electron microscopy. Differential thermal analysis and thermogravimetric analysis coupled with infrared analysis techniques were used in an effort to understand the underlying mechanism and establish the best ratio biopitch/ZnO to be used. This paper presents the characterization of the as-synthesized nanowires and discusses the main reactions involved in their production.  相似文献   
35.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   
36.
ABSTRACT: BACKGROUND: This study was done to obtain concentrated polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2) and monounsaturated fatty acid (MUFA) oleic acid (OA; 18:1) from Jatropha curcas seed oil by urea complexation. Urea complexation is a method used by researchers to separate fatty acids (FAs) based on their molecular structure. Effects the ratio of urea-to-FAs, crystallization temperature and crystallization time on the final products of urea complexation were examined. D-optimal Design was employed to study the significance of these factors and the optimum conditions for the technique were predicted and verified. RESULTS: Optimum conditions of the experiment to obtain maximum concentration of LA were predicted at urea-to-FAs ratio (w/w) of 5:1, crystallization temperature of 10 C and 24 h of crystallization time. Under these conditions, the final non-urea complex fraction (NUCF) was predicted to contain 92.81% of LA with the NUCF yield of 7.8%. The highest percentage of OA (56.14%) was observed for samples treated with 3:1 urea-to-FAs ratio (w/w) at 10 C for 16 h. The lowest percentage of LA (8.84%) was incorporated into urea complex fraction (UCF) with 1:1 urea-to-FAs ratio (w/w) at 10 C for 8 h. CONCLUSIONS: The separation of PUFA (LA) and MUFA (OA) described here. Experimental variables should be carefully controlled in order to recover a maximum content of PUFA and MUFA of interest with reasonable yield% with a desirable purity of fatty acid of interest.  相似文献   
37.
Compound 1 has been prepared by the reaction of 4-nitrophthalonitrile and trans-2-methoxy-4-(2-nitrovinil)phenol by the common method of nucleophilic substitution of an activated nitro group in an aromatic ring. The metallophthalocyanines 2, 3 were prepared by the reaction of a dinitrile derivative with Co(OAc)(2) or Zn(OAc)(2) in DMSO. The lutetium bis-(phthalocyaninato) complex 4 was obtained by treating the dinitrile derivative with lutetium acetate and DBU in 1-hexanol. The new compounds were characterized by elemental analyses, FT-IR, (1)H-NMR, MALDI-TOF MS and UV/Vis spectral data. The spectroscopic data of the new compounds were in accordance with the structures. The temperature and frequency dependence of dielectric and conduction properties of the spin coated film of compounds (2-4) have been studied by fabricating metal-Pc-metal structures. The results show that compound 2 has giant dielectric constant. At a low range of frequency and room temperature, ε' is found to be equal to 2.33 × 10(6), 1.53 × 10(4) and 1.03 × 10(4) for 2, 3 and 4, respectively. The giant dielectric behavior of 2 is mainly attributed to Maxwell-Wagner polarization. The obtained results also indicated that the frequency dependence of the dielectric permittivity, ε'(ω), exhibits non-Debye type relaxation for all temperatures investigated. The ac conductivity results gave a temperature dependent frequency exponent s. The results were compared with the prediction of the Quantum Mechanical Tunneling and Correlated Barrier Hopping models.  相似文献   
38.
The photostabilization of poly(methyl methacrylate) (PMMA) films by Schiff bases of 2,5-dimercapto-1,3,4-thiadiazole compounds was investigated. The PMMA films containing concentration of complexes 0.5% by weight were produced by the casting method from chloroform solvent. The photostabilization activities of these compounds were determined by monitoring the hydroxyl index with irradiation time. The changes in viscosity average molecular weight of PMMA with irradiation time were also tracked (using benzene as a solvent). The quantum yield of the chain scission (Φcs) of these complexes in PMMA films was evaluated and found to range between 4.19 × 10?5 and 8.75 × 10?5. Results obtained showed that the rate of photostabilization of PMMA in the presence of the additive followed the trend:[1] > [2] > [3] > [4] > [5].According to the experimental results obtained, several mechanisms were suggested depending on the structure of the additive. Among them, UV absorption, peroxide decomposer, and radical scavenger for photostabilizer mechanisms were suggested.  相似文献   
39.
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively.  相似文献   
40.
Acylations of 1,3-dimethyl- ( 1 ) and 1,3,7-trimethylpyrrolo[2,3-d]pyrimidine-2,4-dione ( 2 ) with anhydrides in the presence of trifluoroacetic acid proceed well to give in good yields the corresponding 7-acyl derivatives 3–11 . The 6-trichloroacetyl derivatives 5 and 6 are sensitive towards nucleophiles, which displace the trichloromethyl group easily by formation of the corresponding 6-carboxylic acid derivatives 12–23. The newly synthesized compounds have been characterized by elemental analysis, uv and 1H nmr spectra and pKa, determinations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号