首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
化学   80篇
晶体学   3篇
数学   1篇
物理学   10篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1980年   3篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
21.
The title compound, C36H26O2Se2, displays crystallographic twofold symmetry. The packing involves corrugated linear ribbons mediated through C—H?O and C—H?Se inter­actions. The ribbons are connected through C—H?π inter­actions.  相似文献   
22.
3-Acetyl-1,6,7,12b-tetra­hydro­indolo­[2,3-a]­quinolizin-2(12H)-one, C17H16N2O2, consists of two symmetry-independent mol­ecules and each forms a layered structure stabilized by N—H⃛O and C—H⃛O hydrogen bonds. In 3-acetyl-6,7-di­hydro­indolo­[2,3-a]­quinolizin-4(12H)-one monohydrate, C17H14N2O2·H2O, the structure is stabilized by O—H⃛O, N—H⃛O and C—H⃛O hydrogen bonds, with the ordered water mol­ecule playing a crucial role in the self-assembly. Contribution from the weak interactions to the strong hydrogen-bonded network is a common feature in both structures.  相似文献   
23.
In the crystal structure of the title compound, C13H12N2O, N—H(anti)?O hydrogen bonds produce the so‐called urea α‐network and the N—H(syn) donor forms an unconventional N—H?π hydrogen bond.  相似文献   
24.
The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C. cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C. cajan nutraceutical and pharmacological applications.  相似文献   
25.
An efficient and environmentally sustainable domino protocol has been presented for the synthesis of structurally diverse spiroannulated indolo[3,2-c]quinolines involving three component sequential reaction of phenylhydrazine, o-aminoacetophenone and cyclic ketones using nanostructured terbium doped TiO2 as recyclable and reusable heterogeneous catalyst. The nanostructured catalyst was synthesized successfully and characterized by X-ray Diffraction (XRD), transmission electron microscopy (TEM), EDX and Fourier transform infra-red spectroscopy (FTIR). The substitution of Ti+4 with Tb+3 and the formation of Ti-O-Tb bonds as a result of doping of Terbium with TiO2 NPs increases the catalytic efficiency and facilitates the reaction to provide the products in excellent yields. The present protocol with special features; operational simplicity, atom-economy, mild reaction conditions, environmental sustainability and high synthetic efficiency with recyclability and reusability of catalyst has been reported for the first time to synthesize spiroannulated indoloquinolines and expecting to provide the library of promising new leads in drug discovery research.  相似文献   
26.
The effect of temperature on the cocrystallization of benzoic acid (BA), pentafluorobenzoic acid (FBA), benzamide (BAm), and pentafluorobenzamide (FBAm) is examined in the solid state. BA and FBA formed a 1:1 complex 1 at ambient temperature by grinding with a mortar and pestle. Grinding FBA and BAm together resulted in partial conversion into the 1:1 adduct 2 at 28 °C and complete transformation into the product cocrystal at 78 °C. Further heating (80–100 °C) and then cooling to room temperature gave a different powder pattern from that of 2 . BAm and FBAm hardly reacted at ambient temperature, but they afforded the 1:1 cocrystal 3 by melt cocrystallization at 110–115 °C. Both BA+FBAm ( 4 ) and BA+BAm ( 5 ) reacted to give new crystalline phases upon heating, but the structures of these products could not be determined owing to a lack of diffraction‐quality single crystals. The stronger COOH and CONH2 hydrogen‐bonding groups of FBA and FBAm yielded the equimolar cocrystal 6 at room temperature, and heating of these solids to 90–100 °C gave a new crystalline phase. The X‐ray crystal structures of 1 , 2 , 3 , and 6 are sustained by the acid–acid/amide–amide homosynthons or acid–amide heterosynthon, with additional stabilization from phenyl–perfluorophenyl stacking in 1 and 3 . The temperature required for complete transformation into the cocrystal was monitored by in situ variable‐temperature powder X‐ray diffraction (VT‐PXRD), and formation of the cocrystal was confirmed by matching the experimental peak profile with the simulated diffraction pattern. The reactivity of H‐bonding groups and the temperature for cocrystallization are in good agreement with the donor and acceptor strengths of the COOH and CONH2 groups. It was necessary to determine the exact temperature range for quantitative cocrystallization in each case because excessive heating caused undesirable phase transitions.  相似文献   
27.
28.
4,4-Diphenyl-2,5-cyclohexadienone (1) crystallized as four conformational polymorphs and a record number of 19 crystallographically independent molecules have been characterized by low-temperature X-ray diffraction: form A (P2(1), Z'=1), form B (P1, Z'=4), form C (P1, Z'=12), and form D (Pbca, Z'=2). We have now confirmed by variable-temperature powder X-ray diffraction that form A is the thermodynamic polymorph and B is the kinetic form of the enantiotropic system A-D. Differences in the packing of the molecules in these polymorphs result from different acidic C-H donors approaching the C=O acceptor in C-H...O chains and in synthons I-III, depending on the molecular conformation. The strength of the C-HO interaction in a particular structure correlates with the number of symmetry-independent conformations (Z') in that polymorph, that is, a short C-HO interaction leads to a high Z' value. Molecular conformation (Econf) and lattice energy (Ulatt) contributions compensate each other in crystal structures A, B, and D resulting in very similar total energies: Etotal of the stable form A=1.22 kcal mol(-1), the metastable form B=1.49 kcal mol(-1), and form D=1.98 kcal mol(-1). Disappeared polymorph C is postulated as a high-Z', high-energy precursor of kinetic form B. Thermodynamic form A matches with the third lowest energy frame based on the value of Ulatt determined in the crystal structure prediction (Cerius2, COMPASS) by full-body minimization. Re-ranking the calculated frames on consideration of both Econf (Spartan 04) and Ulatt energies gives a perfect match of frame #1 with stable structure A. Diphenylquinone 1 is an experimental benchmark used to validate accurate crystal structure energies of the kinetic and thermodynamic polymorphs separated by <0.3 kcal mol(-1) (approximately 1.3 kJ mol(-1)).  相似文献   
29.
30.
X-ray crystal structures of pyrazinic acid 1 and isomeric methylpyrazine carboxylic acids 2-4 are analyzed to examine the occurrence of carboxylic acid-pyridine supramolecular synthon V in these heterocyclic acids. Synthon V, assembled by (carboxyl)O-H...N(pyridine) and (pyridine)C-H...O(carbonyl) hydrogen bonds, controls self-assembly in the crystal structures of pyridine and pyrazine monocarboxylic acids. The recurrence of acid-pyridine heterodimer V compared to the more common acid-acid homodimer I in the crystal structures of pyridine and pyrazine monocarboxylic acids is explained by energy computations in the RHF 6-31G* basis set. Both the O-H.N and the C-H...O hydrogen bonds in synthon V result from activated acidic donor and basic acceptor atoms in 1-4. Pyrazine 2,3- and 2,5-dicarboxylic acids 10 and 11 crystallize as dihydrates with a (carboxyl)O-H...O(water) hydrogen bond in synthon VII, a recurring pattern in the diacid structures. In summary, the carboxylic acid group forms an O-H...N hydrogen bond in pyrazine monocarboxylic acids and an O-H...O hydrogen bond in pyrazine dicarboxylic acids. This structural analysis correlates molecular features with supramolecular synthons in pyridine and pyrazine carboxylic acids for future crystal engineering strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号