首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   48篇
  国内免费   7篇
化学   1334篇
晶体学   20篇
力学   7篇
数学   100篇
物理学   323篇
  2023年   6篇
  2022年   18篇
  2021年   22篇
  2020年   38篇
  2019年   34篇
  2018年   21篇
  2017年   24篇
  2016年   32篇
  2015年   34篇
  2014年   34篇
  2013年   118篇
  2012年   98篇
  2011年   93篇
  2010年   44篇
  2009年   63篇
  2008年   91篇
  2007年   90篇
  2006年   88篇
  2005年   102篇
  2004年   89篇
  2003年   96篇
  2002年   61篇
  2001年   58篇
  2000年   43篇
  1999年   25篇
  1998年   10篇
  1997年   21篇
  1996年   18篇
  1995年   6篇
  1994年   12篇
  1993年   19篇
  1992年   16篇
  1991年   6篇
  1990年   10篇
  1989年   15篇
  1988年   20篇
  1987年   13篇
  1986年   14篇
  1985年   27篇
  1984年   32篇
  1983年   10篇
  1982年   19篇
  1981年   5篇
  1980年   11篇
  1979年   20篇
  1978年   10篇
  1977年   11篇
  1975年   6篇
  1974年   5篇
  1973年   8篇
排序方式: 共有1784条查询结果,搜索用时 15 毫秒
91.
92.
93.
Dexmedetomidine (Dex) is a selective central α2‐agonist with anesthetic properties and has been used in clinical practice for sedation in the intensive care unit (ICU) after operations. In this study, an analytical assay for the determination of Dex in a small amount of plasma was developed for the application to pediatric ICU trials. The quantification of Dex was constructed using the original stable isotope Dex‐d3 for electrospray ionization‐tandem mass spectrometry (ESI‐MS/MS) in the selected reaction monitoring mode. A rapid ultra‐performance liquid chromatography technique was adopted using ESI‐MS/MS with a runtime of 3 min. Efficacious concentration levels (50 pg/mL to 5 ng/mL) could be evaluated using a very small amount of plasma (10 μL) from patients. The lower limit of the quantification was 5 pg/mL in the plasma (100 µL). For sample preparation, a solid‐phase extraction was used along with the OASIS‐HLB cartridge type. Recovery values ranged from 98.8 to 100.3% for the intra‐ [relative standard deviation (RSD), 0.9–1.3%] and inter‐ (RSD, 0.9–1.5%) day assays. A stable test had recovery values that ranged from 97.8 to 99.7% with an RSD of 1.0–1.9% for the process/wet extract, bench‐top, freeze–thaw and long‐term tests. This method was used to measure the Dex levels in plasma from pediatric ICU patients. In the clinical ICU trial, the small amount of blood (approximate plasma volume, 200 μL) remaining from blood gas analysis was reused and targeted for the clinical analysis of Dex in plasma. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
94.
95.
The concentrations of l ‐tryptophan (Trp) and the metabolite l ‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l ‐Trp and l ‐KYN with (R)‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS) and separation by high‐performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection on a triazole‐bonded column (Cosmosil HILIC®) was developed to determine their concentrations. The optimized mobile phase, CH3CN/10 mm ammonium formate in H2O (pH 5.0) (90:10, v/v) eluted isocratically, resulted in satisfactory separation and MS/MS detection of the analytes. The detection limits of l ‐Trp and l ‐KYN were approximately 50 and 4.0 pm , respectively. The column temperature affected the retention behaviour of the Trp and KYN derivatives, with increased column temperatures leading to increased capacity factors; positive enthalpy changes were revealed by van't Hoff plot analyses. Using the proposed LC‐MS/MS method, l ‐Trp and l ‐KYN were successfully determined in 10 μL human serum using 1‐methyl‐l ‐Trp as an internal standard. The precision and recovery of l ‐Trp were in the ranges 2.85–9.29 and 95.8–113%, respectively, while those of l ‐KYN were 2.51–16.0 and 80.8–98.2%, respectively. The proposed LC‐MS/MS method will be useful for evaluating the in vivo activity of IDO or TDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
96.
The title compound, [Fe2(C5H5)2(C40H22O2)] or 1,4‐(FcPh)2Aq [where FcPh is 2‐(4‐ferrocenylphenyl)ethynyl and Aq is anthraquinone], was synthesized in an attempt to obtain a new solvent‐incorporating porous material with a large void space. Thermodynamic data for 1,4‐(FcPh)2Aq show a phase transition at approximately 430 K. The crystal structure of solvent‐free 1,4‐(FcPh)2Aq was determined at temperatures of 90, 300 and 500 K using synchrotron powder diffraction data. A direct‐space method using a genetic algorithm was employed for structure solution. Charge densities calculated from observed structure factors by the maximum entropy method were employed for model improvement. The final models were obtained through multistage Rietveld refinements. In both phases, the structures of which differ only subtly, the planar Aq fragments are stacked alternately in opposite orientations, forming a one‐dimensional column. The FcPh arms lie between the stacks and fill the remaining space, leaving no voids. C—H...π interactions between the Ph and Fc fragments mediate crystal packing and stabilization.  相似文献   
97.
A larger quantity of a β-keto ester that is 1.5–1.7 equiv more than the base (t-BuOK, NaH) was found to be essential in securing sufficient yields of the products in the palladium-catalyzed allylic substitution of the monoacetate of 4-cyclopentene-1,3-diol with β-keto esters. This requirement also works well for substitutions with the TBS ether of the monoacetate and the monoacetate of 2-cyclohexene-1,4-diol. As an application, the coronafacic acid ethyl ester was synthesized as an optically active form.  相似文献   
98.
Exploration of pure metal-free organic molecules that exhibit strong room-temperature phosphorescence (RTP) is an emerging research topic. In this regard, unveiling the design principles for an efficient RTP molecule is an essential, but challenging, task. A small molecule is an ideal platform to precisely understand the fundamental role of each functional component because the parent molecule can be easily derivatized. Here, the RTP behaviors of a series of 3-pyridylcarbazole derivatives are presented. Experimental studies in combination with theoretical calculations reveal the crucial role of the n orbital on the central pyridine ring in the dramatic enhancement of the intersystem crossing between the charge-transfer-excited singlet state and the locally excited triplet states. Single-crystal X-ray crystallographic studies apparently indicate that both the pyridine ring and fluorine atom contribute to the enhancement of the RTP because of the restricted motion owing to weak C−H⋅⋅⋅N and H⋅⋅⋅F hydrogen-bonding interactions. The single crystal of the fluorine-substituted derivative shows an ultra-long phosphorescent lifetime (τP) of 1.1 s and a phosphorescence quantum yield (ΦP) of 1.2 %, whereas the bromine-substituted derivative exhibits τP of 0.15 s with a ΦP of 7.9 %. We believe that this work provides a fundamental and universal guideline for the generation of pure organic molecules exhibiting strong RTP.  相似文献   
99.
100.
As altering permanent shapes without loss of material function is of practical importance for material molding, especially for elastic materials, shape‐rememorization ability would enhance the utility of elastic crystalline materials. Since diffusionless plastic deformability can preserve the crystallinity of materials, the interconversion of diffusionless mechanical deformability between superelasticity and ferroelasticity could enable shape rememorization of superelastic single crystals. This study demonstrates the shape rememorization of an organosuperelastic single crystal of 1,4‐dicyanobenzene through time‐reversible interconversion of superelasticity–ferroelasticity relaxation by holding the mechanically twinned crystal without heating. The shape‐rememorization ability of the organosuperelastic crystal indicates the compatibility of superelasticity (antiferroelasticity) and ferroelasticity as well as the intrinsic workability of organic crystalline materials capable of recovering their crystal functions under mild conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号