首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   31篇
  国内免费   8篇
化学   301篇
晶体学   2篇
力学   30篇
数学   25篇
物理学   81篇
  2024年   3篇
  2023年   4篇
  2022年   20篇
  2021年   38篇
  2020年   30篇
  2019年   37篇
  2018年   24篇
  2017年   22篇
  2016年   28篇
  2015年   23篇
  2014年   31篇
  2013年   34篇
  2012年   26篇
  2011年   26篇
  2010年   26篇
  2009年   13篇
  2008年   11篇
  2007年   11篇
  2006年   12篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
411.
Defected carbon materials as a metal-free catalyst have shown superior stability and catalytic performance in the acetylene hydrochlorination reaction. Through density functional theory (DFT) calculations, for the first time, several different defected configurations comprising mono and divacancies and Stone Wales defect on single-walled carbon nanotubes (SWCNTs) have been used as a direct catalyst for acetylene hydrochlorination reaction. These defective sites on SWCNTs are the most active site for acetylene hydrochlorination reaction compare to pristine SWCNT. The different configurations of defects have different electronic structures, which specify that monovacancy defects have more states adjacent to the Fermi level. The reactant acetylene (C2H2) adsorbed strongly compared to hydrogen chloride (HCl) and expected to be the initial step of the reaction. Acetylene adsorbed strongly at monovacancy defected SWCNT compared to other investigated defects. Reaction pathway analysis revealed that mono- and divacancy defected SWCNTs have minimum energy barriers and show extraordinary performance toward acetylene hydrochlorination. This work suggests the potential of metal-free defected carbon in catalyzing acetylene hydrochlorination and provides a solid base for future developments in acetylene hydrochlorination.  相似文献   
412.
A facile and efficient synthesis of N‐alkyl‐2‐(1, 2 dihydro‐1‐methylene‐4‐oxobenzo[f] isoquinoline‐3(4H)‐yl)‐2‐phenylacetamides is performed by the consecutive, two‐step procedure that consists of Ugi and Heck reactions. The Heck reaction was performed both by homogenous and a designed heterogeneous catalyst. The heterogeneous catalyst is a coordinated palladium to 1, 10‐phenanthroline attached to chitosan@Fe3O4 magnetite nanoparticles, which was shown to be more efficient than the homogenous Pd(OAc)2/PPh3 catalyst with good to excellent yields.  相似文献   
413.
The complex [PtMe(2)(dppa)], 1a, dppa = Ph(2)PNHPPh(2), which has previously been prepared as a mixture with the dimeric form [Pt(2)Me(4)(micro-dppa)(2)], was synthesized in pure form by the reaction of [PtCl(2)(dppa)] with MeLi. The aryl analogue [Pt(p-MeC(6)H(4))(2)(dppa)], 1b, was prepared by replacement of SMe(2) in cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with dppa. The reaction of the chelate complexes 1 with one equiv. of dppa afforded the complexes [PtR(2)(dppa-P)(2)], R=Me, 2a and R=p-MeC(6)H(4) 2b. The reaction of [PtR(2)(dppa)], 1, with neat MeI gave the organoplatinum(iv) complexes [PtR(2)MeI(dppa)], R=Me, 5a and R=p-MeC(6)H(4), 5b. The structure of 5a, determined by X-ray crystallography, indicated that the complex undergoes self-assembly by intermolecular N-H . . . I-Pt hydrogen bonding. MeI was also double oxidatively added to organodiplatinum(ii) complex cis,cis-[Me(2)Pt(micro-SMe(2))(micro-dppa)PtMe(2)], to give diorganoplatinum(iv) complex [Me(3)Pt(micro-dppa)(micro-I)(2)PtMe(3)], 4. The aryl analogue organodiplatinum(ii) complex cis,cis-[(p-MeC(6)H(4))(2)Pt(micro-SMe(2))(micro-dppa)Pt(p-MeC(6)H(4))(2)], 3b, was prepared by the reaction of cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with half equiv. of dppa, but 3b refused to react with MeI, probably because of the steric effects of the aryl ligands. The tetramethyl complex [PtMe(4)(dppa)], 6, was prepared either by reaction of 5a with MeLi or by replacement of SMe(2) in [Pt(2)Me(8)(micro-SMe(2))(2)] with dppa. All the complexes were fully characterized in solution by multinuclear NMR ((1)H, (13)C, (31)P and (195)Pt) methods and their coordination compared with that of the corresponding known dppm complexes.  相似文献   
414.
In this research, synthesis, antimicrobial and antioxidant activities of a series of catecholthioethers having benzoxazole and tetrazole moieties are described. Antimicrobial activity was evaluated by minimum inhibitory concentration (MIC) assay. The synthesized compounds were tested in vitro against three Gram-positive bacteria including Staphylococcus aureus (clinical isolated), Staphylococcus aureus ATCC 25922, Enterococcus faecium (clinical isolated), and two Gram-negative bacteria including Klebsiella pneumoniae (clinical isolated) and Pseudomonas aeruginosa 27853 and the yeast Candida albicans in comparison with control drugs. Microbiological results indicated that the synthesized compounds possessed a broad spectrum of activity against the tested microorganisms at MIC values between 4-256 μg/ml. This shows compounds having tetrazole moiety were the most active against Gram-negative strains, whereas compounds having benzoxazole moiety were more active against Gram-positive ones. Also both of them showed significant antifungal activity against Candida albicans and had lower activity than the compared control drugs (Sulfamethoxazole and Fluconazole). The antioxidant activity was assessed using two methods, including, 1,1-biphenyl-2-picrylhydrazyl (DPPH) radical scavenging, and reducing power assays. Some of the catecholthioether derivatives showed antioxidant activity more than Trolox and butylated hydroxyanisole (BHA) as reference antioxidants.  相似文献   
415.
An extensive study of Fischer-Tropsch synthesis on nanostructure supports with high surface area such as nanostructure γ-alumina, single wall carbon nanotubes (SWNTs), and the hybrid of SWNTs/nanostructure γ-alumina has been investigated. The nanostructure γ-alumina was promoted with lanthanum to obtain better performance of catalyst and 15 wt% cobalt loading was the basis of our investigation. Fischer-Tropsch synthesis was performed in a fixed bed reactor under different reaction conditions (220–240 °C, 15–25 bar, H2/CO ratio of 2, GHSV of 900–1400) in order to study the effects of temperature, pressure and gas hourly space velocity (GHSV) changes on hydrocarbon selectivity and catalyst activity. The catalysts were extensively characterized by different methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma (ICP), hydrogen (H2) chemisorption and temperature-programmed reduction (TPR). The results showed that the yield of hybrid supported catalyst (55.4%) is higher than that of nanostructure γ-alumina supported catalyst (55.0%) and lower than that of SWNTs supported cobalt catalyst (71.0%). The hybrid supported catalyst showed higher reduction degree and dispersion of cobalt particles. The temperature, pressure and GHSV effects on hybrid supported catalyst were studied and results showed that higher pressure favors the chain growth and temperature increase leads to the increases in methane selectivity and CO conversion. Higher hydrocarbon selectivity and CO conversion showed positive relationship with increasing GHSV while lower hydrocarbon selectivity diminishes.  相似文献   
416.
D‐optimal experimental design with three levels of SiO2/Al2O3, template/SiO2, H2O/SiO2, SiO2/Na2O and TPABr/TPAOH ratio parameters was used to optimize the experimental parameters by the analysis of variance (ANOVA). The effects of above mentioned ratios in the initial synthetic mixture on the crystallinity of the ZSM‐5 zeolite were studied. The synthesized samples were characterized by XRD, FE‐SEM, and TEM analysis. Fischer test results showed that SiO2/Al2O3 and H2O/SiO2 molar ratios are the most and least effective parameters, respectively, in the range studied. The most important two‐way interaction variable was that of template/SiO2 and Na2O/SiO2 molar ratios. The optimum composition of the gel compound to achieve relative maximum crystallinity is SiO2/Al2O3 = 99.96, template/SiO2 = 0.16, H2O/SiO2 = 34.68, Na2O/SiO2 = 0.02 and TPABr/TPAOH = 1.44.  相似文献   
417.
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.  相似文献   
418.
Two series of new organosoluble and thermally stable polyimides containing anthracene, and fluorene pendants were prepared by a two-step solution polycondensation reaction of new synthesized diamines with commercially available dianhydrides. All intermediates and polymers were fully characterized by FTIR, NMR, and elemental analysis and their properties including solubility and thermal stability were studied. All the resulting polymers were amorphous with inherent viscosities ranged from 0.61 to 0.84 dL/g and were readily soluble in many organic solvents.  相似文献   
419.
The n-alkyl halides, RX, were oxidatively added to the platina(II)cyclopentane complexes [Pt[(CH2)4](NN)], in which NN = bpy (2,2'-bipyridyl) or phen (1,10-phenanthroline), to give the platinum(IV) complexes [PtRX[(CH2)4](NN)], R = Et and X = Br or I; R = nBu and X = I, 1-3. The same reactions with the analogous dimethyl complex [PtMe2(bpy)] gave the expected platinum(IV) complexes [PtRXMe2(bpy)], R = Et or nPr and X = Br or I; R = nBu and X = I, 4-8. Kinetics of the reactions in benzene and acetone was studied using UV-vis spectrophotometery and a common S(N)2 mechanism was suggested for each case. The platina(ii)cyclopentane complexes reacted faster than the corresponding dimethyl analogs by a factor of 2-3. This is described as being due to a lower positive charge, calculated by density functional theory (DFT), on the platinum atom of [Pt[(CH)2)4](bpy)] compared with that on the platinum atom of the dimethyl analog [PtMe2(bpy)]. The values of DeltaDeltaS(double dagger) = DeltaS(double dagger)(acetone) - DeltaS(double dagger)(benzene) were found to be either positive or negative in different reactions and this is related to the solvation of the corresponding alkyl halide. It is suggested that in these reactions of RX reagents, for a given X, the electronic effects of the R group are mainly responsible for the change in the rates of the reactions and the bulkiness of the group is far less important.  相似文献   
420.
Composite materials with an ordered layered structure resembling that of nacre were fabricated by layer-by-layer assembly making use of presynthesized α-zirconium hydrogenphosphate hydrate (ZrP) platelets and chitosan. These two biocompatible materials were chosen in view of possible applications in the biomedical field, e.g., as bone or joint replacement implants. The effect of different concentrations of the inorganic ZrP platelets and the organic components (chitosan) on the composite assembly and structure was investigated. A high concentration of chitosan (0.1 wt.%) resulted in a misalignment of the inorganic platelets, while at very low concentrations (0.001 wt.%), the substrate was not fully covered by the polymer, again leading to misalignment. Also, the concentration of the α-ZrP platelets affected the composite assembly and structure. The number of dipping cycles was varied between 70 and 220, yielding a maximum thickness of approximately 6 μm. The pH value of the chitosan solution was also varied to investigate its influence on the composite assembly. The mechanical properties of the composites were tested with a nanoindenter. For samples prepared with the same number of dipping cycles, higher values of Young's modulus and hardness were obtained with improved alignment of the platelets in the samples. For samples prepared with 220 dipping cycles, a Young's modulus of 2.6 GPa and a hardness of 70 MPa were observed. Important general relationships are recognized between the preparation parameters, the degree of order within the nacre-like films and the resulting mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号