首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   16篇
  国内免费   7篇
化学   154篇
力学   11篇
数学   9篇
物理学   52篇
  2024年   3篇
  2023年   2篇
  2022年   11篇
  2021年   28篇
  2020年   16篇
  2019年   17篇
  2018年   16篇
  2017年   15篇
  2016年   12篇
  2015年   12篇
  2014年   10篇
  2013年   18篇
  2012年   14篇
  2011年   13篇
  2010年   9篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1991年   1篇
  1988年   2篇
  1983年   1篇
  1973年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
91.
Photocatalytic activity of TiO2 nanoparticles in the visible light region was enhanced. TiO2–CdSe and TiO2–CdSe/CdS nanohybrids were supported on the reduced graphene oxide. These nanohybrid materials were applied as photocatalyst toward oxidation of aromatic alcohols under a mild condition and the molecular oxygen as oxidant. A plausible mechanism for the photocatalytic oxidation was also proposed. Desired nanohybrids were obtained via in situ fixation of CdSe/CdS on the surface of nanosheets of reduced graphene oxide (rGO). Finally, it was modified by TiO2 sol nanoparticles through a hydrothermal method. The obtained nanomaterials, were characterized by SEM, TEM imaging, XRD, EDAX, DRS and XPS analyses. The size of nanohybrids materials were distributed mostly in a narrow range of 50–65 and 60–75 nm for TiO2–rGO–CdSe and TiO2–rGO–CdSe/CdS, respectively. These photocatalysts showed high catalytic activity under visible light irradiation in a short reaction time and even higher selectivity rather than UV irradiation. The yield of catalytic oxidation increased at least 25–30% for TiO2–CdSe/CdS on rGO, which could be related to its higher light sensitivity and lower energy band gap. The photocatalysts were recycled and reused 8 times without significant loss of their activities due to their stability under visible light.  相似文献   
92.
93.
An electrochemical oxidation route was developed for sensitive and selective assay of nitrotriazolone (NTO) explosive in some environmental samples on a multi-walled carbon nanotube (MWCNTs)/TiO2 nanocomposite paste electrode, for prevention of the analytical interference of conventional reducible energetic compounds. Detailed evaluations were made for the electrochemical behaviour of NTO on the modified electrode by adsorptive stripping voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry techniques in the pH range of 2.0–10.0. Parameters such as diffusion coefficient constant of NTO were calculated, and various experimental conditions were also optimised. Under optimal conditions the calibration curve had two linear dynamic ranges of 130.0–3251.5 μg L?1 and 6.5–26.0 mg L?1 with a detection limit of 26.0 μg L?1 (0.2 μmol L?1) and precision of <3%. This electrochemical sensor was further applied to determine NTO in real soil and water samples with satisfactory results.  相似文献   
94.
95.
96.
97.
98.
Babar  Kashaf  Zahoor  Ameer Fawad  Ahmad  Sajjad  Akhtar  Rabia 《Molecular diversity》2021,25(4):2487-2532
Molecular Diversity - Spirocyclic compounds fascinate the synthetic chemists due to their privileged ring system and efficacy in drug discovery. Many natural compounds comprise spirocyclic moiety...  相似文献   
99.
100.
Ion acoustic solitary waves in a quantum plasma, which is slowly rotating around an axis at an angle θ with the direction of magnetic field, are investigated. Quantum hydrodynamic model is under consideration with the effects of rotations which are included via Coriolis force. Fermions are degenerate and have different spin density states, that is, up and down characterized via parameter α. Linear analysis is performed by applying Fourier transformation to derive dispersion relation. For nonlinear analysis, we apply reductive perturbation method to derive Korteweg de Vries equation (KdV). The effects of variations of Coriolis force, spin polarization, and quantum parameter on characteristics of solitary structure are discussed. These results are applicable to astrophysical and laboratory plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号