首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   12篇
  国内免费   2篇
化学   149篇
晶体学   4篇
力学   1篇
数学   7篇
物理学   13篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   11篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有174条查询结果,搜索用时 218 毫秒
11.
Abstract

A new sesquiterpene lactone geigerianoloide (1) and four known flavonoids axillarin (2), quercetin (3), 3-methoxy-5,7,3',4'-tetrahydroxy-flavone (4) and hispidulin (5) were isolated from Geigeria alata (DC) Oliv. & Hiern. (Asteraceae). Structures were deduced using 1H- and 13C- NMR spectroscopy, mass spectrometry, while the structure of compound 1 was also deduced using X-ray crystallography technique.

Geigeria alata is traditionally used for diabetes, therefore compounds were tested for anti-glycation activity, in which compounds 2 and 3 showed potent activities (IC50 values of 246.97?±?0.83 and 262.37?±?0.22 µM, respectively) compared to IC50 value 294.50?±?1.5 µM of rutin. Moreover, compound 4 exhibited a comparable activity to rutin (IC50?=?293.28?±?1.34 µM). Compound 5 showed a weak activity.

Compounds 2, 3, and 4 exhibited potent DPPH radical scavenging activity (IC50?=?0.1?±?0.00, 0.13?±?0.00 and 0.15?±?0.01 µM, respectively). Compounds 2, 3, and 4 demonstrated significant superoxide anion scavenging activity with IC50 values of 0.14?±?0.001, 0.17?±?0.00, and 0.11?±?0.006 µM, respectively.  相似文献   
12.
An attempt has been made to develop and validate a simultaneous HPLC method for novel approach of drug release via oil‐in‐water (o/w) nanoemulsion formulation and Habb‐e‐Khardal Unani tablet containing piperine and guggul sterones E and Z as main ingredients. Nanoemulsion was prepared by titration method using sefsol‐218 as an oily phase, cremophor‐EL as a surfactant, transcutol as a co‐surfactant and distilled water as an aqueous phase. The formulation was optimized on the basis of thermodynamic stability and dispersibilty test. The nanoformulation was evaluated for particle size, surface morphology, electrical conductivity and viscosity determination. The in vitro dissolution was carried out by dialysis bag method. Drugs were quantified using an HPLC method developed in‐house with a C18 column as stationary phase and acetonitrile and water as mobile phase at λmax of 240 nm. The optimized formulation showed higher drug release, lower droplet size and less viscosity as compared with the conventional Habb‐e‐Khardal Unani tablet. The present study illustrated the potential of nanoemulsion dosage form in improving biopharmaceutic performance of piperine and guggul sterone. The HPLC method was also found to be quite sufficient for the routine quality control of formulations containing piperine and guggul sterone E and Z as ingredients and also for in vitro drug release studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
13.
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.  相似文献   
14.
Here, we report dielectric behaviour of lanthanum substituted Ba0.80Pb0.20Ti0.90Zr0.10O3 (BPZT) ceramics. The material series with compositional formula Ba0.80−xLaxPb0.20Ti0.90Zr0.10O3 (BLPZT) with x varying from 0 to 0.01 in the steps of 0.0025 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered at 1325 °C. All the samples were subjected to X-ray diffraction (XRD) analysis and found to be single phase. Dielectric behaviour was studied as a function of frequency and temperature and Curie temperature (Tc) was determined. Tc was found to decrease with increasing x. The details are discussed and presented in this paper.  相似文献   
15.
Summary Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted field is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes. To the memory of M. H. Kazi  相似文献   
16.
An efficient synthetic method of heterocyclic flavone benzofuran fused derivatives is reported in good to excellent yield (75–90%) via Ullmann type coupling reaction. The protocol involves catalytic amount of CuI (10 mol%) and K2CO3 base for the intramolecular CO bond formation under mild reaction conditions.  相似文献   
17.
β-D-galactosidase (EC 3.2.1.23) from Kluyveromyces marxianus YW-1, an isolate from whey, has been studied in terms of cell disruption to liberate the useful enzyme. The enzyme produced in a bioreactor on a wheat bran medium has been successfully immobilized with a view to developing a commercially usable technology for lactose hydrolysis in the food industry. Three chemical and three physical methods of cell disruption were tested and a method of grinding with river sand was found to give highest enzyme activity (720 U). The enzyme was covalently immobilized on gelatin. Immobilized enzyme had optimum pH and temperature of 7.0 and 40 °C, respectively and was found to give 49% hydrolysis of lactose in milk after 4 h of incubation. The immobilized enzyme was used for eight hydrolysis batches without appreciable loss in activity. The retention of high catalytic activity compared with the losses experienced with several previously reported immobilized versions of the enzyme is significant. The method of immobilization is simple, effective, and can be used for the immobilization of other enzymes.  相似文献   
18.
A novel simple, sensitive, selective, and rapid high-performance liquid chromatography coupled with tandem mass spectrometry method was developed and validated for quantification of riluzole in human plasma. The chromatography was performed by using a Zorbax-SB-C18 (4.6 × 75 mm, 3.5 μm) column , isocratic mobile phase 0.1% formic acid/acetonitrile (10:90 v/v), and an isotope-labeled internal standard (IS), [13C,15N2]riluzole. The extraction of drug and internal standard was performed by liquid–liquid extraction and analyzed by MS in the multiple reaction monitoring (MRM) mode using the respective [M+H]+ ions, m/z 235.0/165.9 for riluzole and m/z 238.1/169.0 for the IS. The calibration curve was linear over the concentration range 0.5–500.0 ng/ml for riluzole in human plasma. The limit of quantification (LOQ) was demonstrated at 0.5 ng/ml. The within-batch and between-batch precision were 0.6–2.3% and 1.4–5.7%, and accuracy was 97.1–101.1% and 98.8–101.2% for riluzole respectively. Drug and IS were eluted within 3.0 min. The validated method was successfully applied in a bioequivalence study of riluzole in human plasma.  相似文献   
19.
<正>A new flavonoidic glycoside,tricin-4'-O-β-L-arabinoside(1) was isolated from the leaves of Alstonia macrophylla along with two known flavonoids,vitexin and myricetin-3′-rhamnoside-3-O-galactoside.Their structures were established by chemical and spectral evidences.The known compounds were reported for the first time from this plant.Moreover compound 1 was tested for antifungal and antibacterial activities.  相似文献   
20.
In the present study a novel stability‐indicating high‐performance thin‐layer chromatography (HPTLC) method for quantitative determination of silybin in bulk drug and nanoemulsion formulation has been developed and validated on silica using solvent chloroform–acetone–formic acid (9 : 2 : 1 v/v/v) (Rf of silybin 0.46 ± 0.05) in the absorbance mode at 296 nm. The method showed a good linear relationship (r2 ± 0.999) in the concentration range 25–1500 ng per spot. It was found to be linear, accurate, precise, specific, robust and stability‐indicating and can be applied for quality control and standardization of several multi‐component hepatoprotective formulations as well as for stability testing of different dosage forms. The method proposed was also used to investigate the kinetics of acidic and alkaline degradation processes by quantification of drug at different temperature to calculate the activation energy and half‐life for silymarin degradation. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号