首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   32篇
  国内免费   7篇
化学   626篇
晶体学   9篇
力学   43篇
数学   176篇
物理学   159篇
  2024年   3篇
  2023年   9篇
  2022年   32篇
  2021年   41篇
  2020年   35篇
  2019年   30篇
  2018年   24篇
  2017年   18篇
  2016年   56篇
  2015年   28篇
  2014年   51篇
  2013年   95篇
  2012年   63篇
  2011年   59篇
  2010年   33篇
  2009年   43篇
  2008年   38篇
  2007年   33篇
  2006年   43篇
  2005年   40篇
  2004年   25篇
  2003年   34篇
  2002年   12篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1979年   12篇
  1978年   4篇
  1977年   2篇
  1971年   2篇
  1965年   1篇
排序方式: 共有1013条查询结果,搜索用时 31 毫秒
51.
Biodegradable polymers belong to a family of polymer materials that found applications ranged from medical applications including tissue engineering, wound management, drugs delivery, and orthopedic devices, to packaging and films applications. For broadening their potential applications, biodegradable polymers are modified utilizing several methods such as blending and composites forming, which lead to new materials with unique properties including high performance, low cost, and good processability. This paper reviews the recent information about the morphology of blends consisting of both biodegradable and non-biodegradable polymers and associated mechanical, rheological, and thermal properties of these systems as well as their degradation behavior. In addition, the mechanical performance of composites based on biodegradable polymers is described.  相似文献   
52.
New bioactive nanocomposite films were prepared by compression molding method for food applications. Film matrix was composed of poly(lactic acid) containing cellulose nanocrystals (PLA-CNC). Nanocomposite films were converted to bioactive films using nisin as an antimicrobial agent by an adsorption coating method. Resulting antimicrobial films were then introduced in packages containing sliced cooked ham as a food model and stored for 14 days at 4 °C to determine their inhibiting capacity against Listeria monocytogenes and their physicochemical and structural properties. The study also focused on the nisin release from the films by using an agar diffusion bioassay. It was observed that mechanical properties such as tensile strength, tensile modulus, elongation at break and water vapor permeability values of the bioactive films were stable after 14 days of storage. Fourier transform infrared spectroscopy analysis allowed characterizing the adsorption of nisin onto PLA-CNC surface. Microbiological analysis of sliced cooked ham inoculated with L. monocytogenes (3 log CFU/g) allowed determining the potentiality of nisin as a strong antimicrobial agent in PLA-CNC-based films. Bioactive PLA-CNC-nisin films showed a significant reduction of L. monocytogenes in ham from day 1 and a total inhibition from day 3. The percentage of nisin release increased continuously from day 0 to day 14, up to 21 % at day 14. These results demonstrated the potential application of PLA-CNC-nisin films on controlling the growth of food pathogens in meat products.  相似文献   
53.
The effect of ionic strength on the rheology and microstructure of Cellulose nanocrystals (CNC) aqueous suspensions are studied over a broad range of CNC (3–15 wt%) and NaCl concentrations (0–15 mM), using polarized optical microscopy combined with rheometry. The CNC suspensions are isotropic at low concentration and form chiral nematic liquid crystalline structure above a first critical concentration and gel above a second critical one. It has been shown that for isotropic CNC suspensions, increasing the ionic strength of the system up to 5 mM NaCl concentration weakens the electro-viscous effects and thus reduces the viscosity of these suspensions. For biphasic samples, which contain chiral nematic liquid crystal domains, increasing the ionic strength up to 5 mM NaCl concentration decreases the size of the chiral nematic domains, and leads the viscosity of the samples at low shear rates to increase. On the other hand, at high shear rates, where all the ordered domains are broken, the viscosity decreases with NaCl addition. For gels, the addition of NaCl up to 5 mM weakens the gel structure and decreases the viscosity. Further addition of NaCl (10 and 15 mM NaCl concentrations) results in extensive aggregation and de-stabilizes the CNC suspensions.  相似文献   
54.
We present a new size-modified Poisson–Boltzmann ion channel (SMPBIC) model and use it to calculate the electrostatic potential, ionic concentrations, and electrostatic solvation free energy for a voltage-dependent anion channel (VDAC) on a biological membrane in a solution mixture of multiple ionic species. In particular, the new SMPBIC model adopts a membrane surface charge density and a natural Neumann boundary condition to reflect the charge effect of the membrane on the electrostatics of VDAC. To avoid the singularity difficulties caused by the atomic charges of VDAC, the new SMPBIC model is split into three submodels such that the solution of one of the submodels is obtained analytically and contains all the singularity points of the SMPBIC model. The other two submodels are then solved numerically much more efficiently than the original SMPBIC model. As an application of this SMPBIC submodel partitioning scheme, we derive a new formula for computing the electrostatic solvation free energy. Numerical results for a human VDAC isoform 1 (hVDAC1) in three different salt solutions, each with up to five different ionic species, confirm the significant effects of membrane surface charges on both the electrostatics and ionic concentrations. The results also show that the new SMPBIC model can describe well the anion selectivity property of hVDAC1, and that the new electrostatic solvation free energy formula can significantly improve the accuracy of the currently used formula. © 2019 Wiley Periodicals, Inc.  相似文献   
55.
Journal of Radioanalytical and Nuclear Chemistry - Polyacrylic acid/polyaniline composite (a three-dimensional cross-linked hydrophilic chelating polymeric sorbent) was improved for promoted...  相似文献   
56.
The present work focused on the utilization of Egyptian red clay (ERC) without any treatment as a highly efficient, selective, and eco-friendly catalyst for synthesis of bio-ethyl acetate in the gas phase. The best conditions used in conventional fixed bed reactor were 130 cm3/min total flow rate of air with 1.6 and 2.1 vol% bio-ethanol and bio-acetic acid, respectively, 1 g clay catalyst calcined at 300 and 225°C reaction temperature. Under these conditions, the conversions to ester achieved were about 80 and 98% after 5 and 30 min, respectively, from the initial admission of the reactants into the reactor. The amount and type of surface acidity were identified by isopropanol reaction and chemisorption of basic probes. The results demonstrated that the majority of intermediate strength of BrØnsted acid sites are the key role for the dehydration reaction toward ester formation. The virgin and annealed clay solids were characterized using X-ray fluorescence (XRF), thermogravimetry (TG) and differential thermal analysis (DTA), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and N2 sorption.  相似文献   
57.
In this paper, phosphate nanoparticles were coated on cotton(CO) and polyester(PES) textile surfaces by sol-gel method using tetraethylorthosilicate(TEOS) and chloropropyltriethoxysilane(CPTS) as silica precursors. The deposited nanoparticles were observed with scanning electronic microscopy energy-dispersive X-ray spectroscopy (SEM-EDX). The release kinetics of phosphorus(P) from these textiles into the aqueous medium(Aq), acid(Ac), and basic(Ba) artificial sweats were then studied. The released amount of phosphorus was evaluated by the inductively coupled plasma(ICP) according to ISO NF EN 16711-2 procedure. The results revealed that the release of P into the aqueous medium is lower than in the artificial sweat. The kinetics data[the phosphorus desorption amount(mg/g) as a function of time] were modeled according to five models:the first order, the second order, the third order, simple Elovich and parabolic diffusion. The suitable model was chosen based on the coefficient of determination(R2) and the calculation of the sum of the absolute errors(EABS), which describes the error between the theoretical and experimental values. SEM observations were also carried out on the fabrics after desorption in order to show the impact of desorption on their morphology. Furthermore, the impact of P release on the tensile strength of CO and PES fabrics was investigated using a uniaxial tensile test. The thermal stability of all samples before and after desorption was assessed by thermogravimetric analysis(ATG).  相似文献   
58.
Two organic fluorophores, fluorescein (F) and rhodamine B (Rd), were entrapped in calcium phosphate nanoparticles. The as-obtained nanoparticles can be used for biological release applications. For this aim, calcium phosphate nanoparticles were synthesized using the precipitation method. Structural analysis of these nanoparticles was performed using XRD, FTIR, and Raman spectroscopy, confirming that the synthesized nanoparticles were hydroxyapatite. TEM and SEM analyses demonstrated that these nanoparticles had a size of 20 nm and a well-defined morphology. F and Rd (about 0.5 wt.%) were entrapped in these nanoparticles and their release, as a function of time, was studied via UV-Vis spectroscopy. The obtained results showed that the release of both fluorophores was progressive over time. The trapping efficiencies of the fluorophores were 67.15% and 90.76% for F and Rd, respectively.  相似文献   
59.
Searching new light‐absorbing materials to replace toxic lead halide in solar cells is very important and highly desirable. In this research, we firstly demonstrated that tellurium iodide (TeI4) could be used as a light‐absorbing material in solar cells due to its suitable optical band gap and the active lone‐pair electron orbital in Te4+. The best power conversion efficiency (PCE=3.56%) was achieved with a concentration of 0.9 M TeI4 in DMF:DMSO (4 : 1, v,v) without any heat treatment or antisolvent dripping. Our study indicates the promising potential of TeI4 for photovoltaic and optoelectronic applications.  相似文献   
60.
Three natural basaltic samples were collected and used as efficient catalysts for the liquid‐phase synthesis of n‐butyl acetate. The samples were characterized by X‐ray fluorescence analysis (XRF), X‐ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared (FT‐IR), scanning electron microscopy (SEM), and N2 sorption. The acidity of the samples was determined using isopropanol dehydration, and the strength of the acid sites was measured using chemisorption of basic probes. The catalytic activity of the samples towards the esterification of acetic acid with n‐butanol was extensively examined. The influence of different parameters, such as the reaction refluxing time, molar ratio, catalyst loading, reusability, and calcination temperature, on the esterification reaction was studied in detail. The results revealed that all samples had high catalytic activity with a selectivity of 100% to n‐butyl acetate formation. In addition, the sample obtained from the top hill of Volcano had the highest activity with a 80% yield of n‐butyl acetate. Moreover, the significant catalytic performances were well correlated with the acidity of the samples and to the reaction rate constants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号