首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   14篇
  国内免费   3篇
化学   177篇
晶体学   5篇
力学   4篇
数学   10篇
物理学   32篇
  2024年   1篇
  2023年   7篇
  2022年   19篇
  2021年   18篇
  2020年   15篇
  2019年   13篇
  2018年   19篇
  2017年   17篇
  2016年   15篇
  2015年   8篇
  2014年   7篇
  2013年   21篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有228条查询结果,搜索用时 46 毫秒
101.
Micro- and nano-structural analyses of damage in bone   总被引:4,自引:0,他引:4  
Skeletal fractures represent a significant medical and economic burden for our society. In the US alone, age-related hip, spine, and wrist fractures accounted for more than $17 billion in direct health care costs in 2001. Moreover, skeletal fractures are not limited to the elderly; stress fractures and impact/trauma-related fractures are a significant problem in younger people also. Gaining insight into the mechanisms of fracture and how these mechanisms are modulated by intrinsic as well as extrinsic factors may improve the ability to define fracture risk and develop and assess preventative therapies for skeletal fractures. Insight into failure mechanisms of bone, particularly at the ultrastructural-level, is facilitated by the development of improved means of defining and measuring tissue quality. Included in these means are microscopic and spectroscopic techniques for the direct observation of crack initiation, crack propagation, and fracture behavior. In this review, we discuss microscopic and spectroscopic techniques, including laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopic imaging for visually observing microdamage in bone, and the current understanding of damage mechanisms derived from these techniques.  相似文献   
102.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   
103.
Three functional epoxides were copolymerized with maleic anhydride to yield degradable poly(propylene fumarate) analogues. The polymers were modified post‐polymerization and post‐printing with either click‐type addition reactions or UV deprotection to either attach bioactive species or increase the hydrophilicity. Successful dye attachment, induced wettability, and improved cell spreading show the viability of these analogues in biomaterials applications.  相似文献   
104.
105.
We synthesized a tridentate Schiff base ligand, 6‐(((2‐hydroxyphenyl)amino)methylene)‐2‐methoxycyclohexa‐2,4‐dienone [H2L], as well as its Mo(VI) complex [MoO2(L)(DMSO)], and then characterized them completely using elemental analysis, FT‐IR, UV–Vis and 1HNMR spectroscopy techniques. X‐ray single crystal diffraction method was used for the determination of the structure of the synthesized ligand and complex. All other spectroscopic techniques performed, confirmed that [MoO2(L)(DMSO)]had an octahedral geometry around the Mo(VI) central ion coordinated by the donor atoms of the deprotonated ligand, two oxido groups and one oxygen atom of DMSO molecule. Hybrid functional B3LYP with DGDZVP as basis set was applied for DFT calculations of the compounds in their ground state. The MEP, Mulliken, HOMO‐LUMO energy gap and thermodynamic properties of the compounds were also theoretically predicted. In‐vitro antimicrobial studies on the synthesized compounds indicated the great antibacterial activities of the Mo(VI) complex against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus bacteria.  相似文献   
106.
Palladium(0) as one of the vital transition metals, is employed in numerous industries, such as drug synthesis, aerospace high-tech field and automobile industry. When the Pd(0) enter into the body, it will bind with thiol-containing amino acids, DNA, RNA, and other biomolecules damaging to human health. Thus, developing a novel tool for monitoring and imaging of Pd(0) in vivo is very urgent. In the work, based on a intramolecular charge transfer (ICT) mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0). In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0) in 30 min in the aqueous solution with a detection limit of 16 nmol/L. It also showed the outstanding selectivity and antijamming performance. More importantly, NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0) in living cells and mice.  相似文献   
107.
The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castration-resistant forms. In this study, a series of 15 bicalutamide analogues (sulfide, deshydroxy, sulfone, and O-acetylated) were prepared and their antiproliferative activity evaluated against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP, and VCap). Bicalutamide and enzalutamide were used as positive controls. Seven of these compounds displayed remarkable enhancement in anticancer activity across the four PC cell lines. The deshydroxy analogue (16) was the most active compound with IC50 = 6.59–10.86 µM. Molecular modeling offers a plausible explanation of the higher activity of the sulfide analogues compared to their sulfone counterparts.  相似文献   
108.
Research on Chemical Intermediates - New series of pyrimidinone-5-carbonitriles 3a–i, 4a–e, 5a–c, 6 and 7 have been synthesized and explored for their activities as anticancer,...  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号