首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   7篇
  国内免费   1篇
化学   139篇
晶体学   8篇
力学   4篇
数学   6篇
物理学   45篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   7篇
  2014年   14篇
  2013年   9篇
  2012年   19篇
  2011年   21篇
  2010年   4篇
  2009年   13篇
  2008年   12篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   7篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有202条查询结果,搜索用时 296 毫秒
131.
Arithmetic logic unit (ALU) is the most important unit in any computing system. Optical computing is becoming popular day-by-day because of its ultrahigh processing speed and huge data handling capability. Obviously for the fast processing we need the optical TALU compatible with the multivalued logic. In this regard we are communicating the trinary arithmetic and logic unit (TALU) in modified trinary number (MTN) system, which is suitable for the optical computation and other applications in multivalued logic system. Here the savart plate and spatial light modulator (SLM) based optoelectronic circuits have been used to exploit the optical tree architecture (OTA) in optical interconnection network.  相似文献   
132.
Single‐crystal X‐ray diffraction studies of two terminally protected tetrapeptides Boc‐Ile‐Aib‐Val‐m‐ABA‐OMe ( I ) and Boc‐Ile‐Aib‐Phe‐m‐ABA‐OMe ( II ) (Aib=α‐aminoisobutyric acid; m‐ABA=meta‐aminobenzoic acid) reveal that they form continuous H‐bonded helices through the association of double‐bend (type III and I) building blocks. NMR Studies support the existence of the double‐bend (type III and I) structures of the peptides in solution also. Field emission scanning electron‐microscopic (FE‐SEM) and high‐resolution transmission electron‐microscopic (HR‐TEM) images of the peptides exhibit amyloid‐like fibrils in the solid state. The Congo red‐stained fibrils of peptide I and II , observed between crossed polarizers, show green‐gold birefringence, a characteristic of amyloid fibrils.  相似文献   
133.
134.
(7S,10R)-5-Methyl-2-((3-(trifluoromethyl)phenyl)sulfonyl)-5,6,7,8,9,10-hexahydro-7,10-epiminocyclohepta[b]indole 1a is a potent 5-HT6 antagonist (h5-HT6 Ki = 1.5 nM) which is derived from an epiminocyclohept[b]indole scaffold. In order to synthesize 1a on a multi-gram scale to support advanced biological testing, an efficient chiral resolution of the intermediate tert-butyl 2-bromo-5,6,7,8,9,10-hexahydro-7,10-epiminocyclohepta[b]indole-11-carboxylate 2 was developed. After derivatizing 2 with (1R)-(?)-menthyl chloroformate it was found that a single diastereomer 7a could be isolated by selective precipitation from n-hexane. The absolute stereochemistry of 7a was determined by X-ray crystallography and the structure was confirmed as (7S,10R)-tert-butyl 2-bromo-5,6,7,8,9,10-hexahydro-7,10-epiminocyclohepta[b]indole-11-carboxylate. Removal of the chiral auxiliary under basic conditions afforded intermediate 2a in >99% enantiomeric purity and with 80% yield based on recovery from the racemic compound 2. Intermediate 2a was used successfully to synthesize 5-HT6 antagonist 1a on a multi-gram scale.  相似文献   
135.
136.
In the present report, bare CdO and CdO/MnO2 core/shell nanostructures of various cores and different shell sizes were synthesized using co‐precipitation method. The phase, size, shape and structural details of the bare CdO and CdO/MnO2 nanostructures were investigated by X‐ray diffraction, transmission electron microscopy (TEM), and Raman spectroscopy measurements. TEM micrographs confirm the formation of core/shell nanostructures. The presence of CdO (core) and MnO2 (shell) crystal phases was determined by analyzing the Raman data of bare CdO and CdO/MnO2 core/shell nanostructures. The Raman spectra of bare CdO nanostructures contain one broad intense convoluted envelop of three bands in the spectral range of 200–500 cm−1 and a weaker band located at ~940 cm−1. The intensity of these two Raman bands is decreased with the increase of shell size and disappeared completely for the shell size 5.3 ± 1 nm. Further, two new Raman bands appeared at ~451 and ~665 cm−1 for the shell size 1.3 ± 0.1 nm. These two Raman bands are assigned to the deformation of Mn–O–Mn and Mn–O stretching modes of MnO2. The intensity of these two Raman bands is enhanced with the increase of shell size and attains a maximum value for the shell size 5.3 ± 1 nm. The disappearance of characteristics Raman bands of CdO phase and the appearance of characteristics Raman bands corresponding to MnO2 phase for nanostructures of shell size 5.3 ± 1 nm authenticate the presence of CdO as core and MnO2 as shell in the core/shell nanostructures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
137.
Eu3+ activated M6AlP5O20 (where M=Sr/Ba/Mg) phosphors prepared by combustion synthesis and the completion of the synthesis was confirm by XRD (X-ray diffraction) patterns. The surface morphology studied by scanning electron microscopy (SEM) and photoluminescence (PL) properties has been reported in this paper. The Eu3+ PL emission spectrum was observed in M6AlP5O20 phosphors (where M=Sr/Ba/Mg) at 592 (orange) and 618 nm (red) region, the spectrum due to 5D07F1 and 5D07F2 transitions at mercury free excitation, respectively. Its considerable emission intensity under 350 nm excitations makes it possible candidate materials as red component of tricolor luminescence materials and for near ultra violet light emitting diode (n-UVLED) phosphors.  相似文献   
138.
Quantum phenomena present in many experiments signify nonclassical behavior, but do not always imply superior performance. Quantifying the enhancement achieved from quantum behavior needs careful analysis of the resources involved. We analyze the case of parameter estimation using an optical interferometer, where increased precision can in principle be achieved using quantum probe states. Common performance measures are examined and some are shown to overestimate the improvement. For the simplest experimental case we compare the different measures and exhibit this overestimation explicitly. We give the preferred analysis of these experiments and calculate benchmark values for experimental parameters necessary to realize a precision enhancement. Our analysis shows that unambiguous real-world enhancements in optical quantum metrology with fixed photon number are yet to be attained.  相似文献   
139.
140.
The Raman spectra of Li0.5Co0.1Fe2.4O4 nanoparticles have been recorded in the spectral range, 400-800 cm−1 at four different particle sizes. X-ray and TEM measurements were done to determine crystal structure and size of the nanoparticles. X-ray diffraction (XRD) shows that the Li0.5Co0.1Fe2.4O4 nanoparticles have an order phase spinel structure without any impurity. The size of the nanocrystal was calculated through XRD patterns and TEM micrographs and it turns out to be 34-42 nm. The Raman spectra of each size nanoparticles show five Raman bands. The most intense Raman band shows a noticeable asymmetrical feature towards lower wavenumber side. A line shape analysis was performed to get the exact spectral parameters of the Raman bands. The intensity of asymmetrical feature keeps on increasing with decreasing the particle size from 42 nm to 34 nm and finally evolved as a new Raman band. The appearance of new band and its intensity response relative to the intensity of the main Raman band as a function of particle size has been explained in terms of electron-phonon coupling. It was observed that the strength of electron-phonon coupling goes on increasing with reducing the particle size. The red shifting of the Raman bands upon reducing the crystalline size is explained in terms of the lattice expansion, which is well supported by the XRD data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号