首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1511篇
  免费   69篇
  国内免费   1篇
化学   995篇
晶体学   25篇
力学   52篇
数学   118篇
物理学   391篇
  2024年   5篇
  2023年   40篇
  2022年   44篇
  2021年   50篇
  2020年   42篇
  2019年   50篇
  2018年   44篇
  2017年   45篇
  2016年   82篇
  2015年   59篇
  2014年   56篇
  2013年   118篇
  2012年   115篇
  2011年   130篇
  2010年   74篇
  2009年   60篇
  2008年   65篇
  2007年   76篇
  2006年   58篇
  2005年   45篇
  2004年   32篇
  2003年   25篇
  2002年   22篇
  2001年   13篇
  2000年   12篇
  1999年   14篇
  1998年   12篇
  1997年   9篇
  1996年   11篇
  1995年   9篇
  1994年   6篇
  1992年   5篇
  1991年   8篇
  1990年   11篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   15篇
  1982年   6篇
  1979年   5篇
  1978年   7篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1971年   7篇
  1970年   6篇
排序方式: 共有1581条查询结果,搜索用时 15 毫秒
51.
Self‐assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small‐angle X‐ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right‐handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two‐fold and three‐fold hybrids are developed by introducing graphene oxide (GO) and in situ‐synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p‐nitrophenol to p‐aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.  相似文献   
52.
The recent emergence of anion-π interactions has added a new dimension to supramolecular chemistry of anions. Yet, after a decade since its inception, actual mechanisms of anion-π interactions remain highly debated. To elicit a complete and accurate understanding of how different anions interact with π-electron-deficient 1,4,5,8-naphthalenediimides (NDIs) under different conditions, we have extensively studied these interactions using powerful experimental techniques. Herein, we demonstrate that, depending on the electron-donating abilities (Lewis basicity) of anions and electron-accepting abilities (π-acidity) of NDIs, modes of anion-NDI interactions vary from extremely weak non-chromogenic anion-π interactions to chromogenic anion-induced charge-transfer (CT) and electron-transfer (ET) phenomena. In aprotic solvents, electron-donating abilities of anions generally follow their Lewis basicity order, whereas π-acidity of NDIs can be fine-tuned by installing different electron-rich and electron-deficient substituents. While strongly Lewis basic anions (OH(-) and F(-)) undergo thermal ET with most NDIs, generating NDI(?-) radical anions and NDI(2-) dianions in aprotic solvents, weaker Lewis bases (AcO(-), H(2)PO(4)(-), Cl(-), etc.) often require the photoexcitation of moderately π-acidic NDIs to generate the corresponding NDI(?-) radical anions via photoinduced ET (PET). Poorly Lewis basic I(-) does not participate in thermal ET or PET with most NDIs (except with strongly π-acidic core-substituted dicyano-NDI) but forms anion/NDI CT or anion-π complexes. We have looked for experimental evidence that could indicate alternative mechanisms, such as a Meisenheimer complex or CH···anion hydrogen-bond formation, but none was found to support these possibilities.  相似文献   
53.
Heuer DM  Saha S  Kusumo AT  Archer LA 《Electrophoresis》2004,25(12):1772-1783
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA.  相似文献   
54.
The structural and functional analogy between difluoromethylene bisphosphonate (CF2PP) and pyrophosphate (PPi) is investigated in a reaction with V(V) in the form of vanadate. The reaction of CF2PP with vanadate was investigated using 1.00 M KCl as supporting electrolyte over the ranges 3 < or = [CF2PP] < or = 60 mM and 2.06 < or = pH < or = 11.80. 51V, 19F, and 31P NMR spectroscopic studies showed that a 1:1 species was formed with an H+-dependent formation constant of 110 M-1 at pH 7.22. Results of solution experiments and ab initio calculations are consistent with CF2PP coordinating V(V) in a bidentate manner, as previously reported for PPi. Below pH 4, a minor complex forms, which is consistent with a 1:2 stoichiometry. This complex was also observed with pyrophosphate. The X-ray crystal structure of the monoprotonated difluoromethylene bisphosphonate anion (H[CF2PP]3-)-toludine complex is presented. The H[CF2PP]3- anion crystallized in the triclinic space group P with a = 12.7629(7) A, b = 13.3992(7) A, c = 17.1002(9) A, and V = 2584.4(2) A3, and Z = 2. Sheets of the layers of anions are connected through a network of H-bonds and separated by a layer of toludine cations. The structural features are investigated, and the CF2PP anion was found to be longer and wider than the corresponding PPi. Given the larger size of this anion compared to PPi, the chelation affinity upon CF2 substitution was found to be 4-5-fold reduced at neutral pH.  相似文献   
55.
Summary The synthesis and coordination behaviour of 1-allylbenzotriazole (ABT), containing both -donating heterocyclic ring nitrogen(s) and a -bonding olefinic group, has been studied by complexation with CoII, NiII, CuII, CuI and AgI salts. The solid complexes M(ABT)2X2 (M=Co, Ni or Cu and X=a counterion) and M(ABT)X (M=Cu or Ag and X=Br, I, or NO3) have been characterised by1H-n.m.r. (representative CuI species) and other physical data. Different modes coordination for the title ligand have been proposed based upon i.r. data which indicate the participation of a -donating ring nitrogen only in complexes with bivalent metal salts, and the involvement of both the ring nitrogen and the allylic olefinic component in bonding to a monovalent metal ion.1H-n.m.r. data are qualitatively commensurate with participation of the allyl group in monovalent metal complexes.  相似文献   
56.
New iron(III) complexes of 5-methyl-3-formylpyrazole thiosemicarbazone (HMPzTS) and 5-methyl-3-formylpyrazole-4-phenylthiosemicarbazone (HMPzPTS), namely [Fe(MPzTS)2]X and [Fe(MPzPTS)2]X respectively, where X=Cl, NO3, SCN and ClO4, have been synthesised and physico-chemically characterised by magnetic measurements (polycrystalline state), electronic, i.r., e.s.r. and Mössbauer spectra. All are cationic complexes containing two monoprotonic tridentate ligands with NNS donor sites and an anionic counterpart; they behave as 1:1 electrolytes in MeOH/DMF. Coordination to central iron(III) via the pyrazolyl nitrogen (2N), the azomethine nitrogen and the thiolato sulphur atom is confirmed in the complexes from i.r. data. E.s.r. data (RT & LNT) reveal the presence of a spin-paired iron(III) cation with d2 xyd2 yzd1 xy configuration. The 57Fe Mössbauer spectral data (RT) are commensurate with the presence of two iron(III) spin states, the percentage of each being dependent upon the counterion of the species.  相似文献   
57.
Studies are reported on the reactions of aqueous chlorine with a series of substitution-inert, one-electron metal-complex reductants, which includes [Ru(bpy)3]2+, [Ru(4,4'-Me2bpy)3]2+, [Ru(4,7-Me2phen)3]2+, [Ru(terpy)2]2+, and [Fe(3,4,7,8-Me4phen)3]2+. The reactions were studied by spectrophotometry at 25 degrees C in acidic chloride media at mu = 0.3 M. In general the reactions have the stoichiometry 2[ML3]2+ + Cl2-->2[ML3]3+ + 2Cl-. In the case of [Ru(bpy)3]2+, the reaction is quite photosensitive; the thermal reaction is so slow as to be practically immeasurable. The reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ are also highly photosensitive, giving pseudo-first-order rate constants that depend on the monochromator slit width in a stopped-flow instrument; however, the thermal rates are fast enough that they can be obtained by extrapolation of kobs to zero slit width. The reactions of [Ru(terpy)2]2+ and [Fe(3,4,7,8-Me4phen)3]2+ show no appreciable photosensitivity, allowing direct determination of their thermal rate laws. From the kinetic effects of pH, [Cl2]tot, and [Cl-] it is evident that all of the thermal rate laws have a first-order dependence on [ML3]2+ and on [Cl2]. The second-order rate constants decrease as Eo for the complex increases, consistent with the predictions of Marcus theory for an outer-sphere electron-transfer mechanism. Quantum yields at 460 nm for the reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ exceed 0.1 and show a dependence on [Cl2] indicative of competition among spontaneous decay of *Ru, nonreactive quenching by Cl2, and reactive quenching by Cl2.  相似文献   
58.
Russian Journal of General Chemistry - A series of 6-imino-1-aryl-4-(arylimino)-1,3,5-triazinane-2-thione derivatives are synthesized by cyclization of 1-aryl-3-cyanoguanidine with aryl...  相似文献   
59.
Replacement of phosphoric acid electrolyte by phosphosilicate gel based electrolytes is proposed for performance enhancement of phosphoric acid fuel cell(PAFC).Phosphosilicate gel in paste form and in powder form is synthesized from tetraethoxysilane and orthophosphoric acid using sol-gel method for two different P/Si ratio of 5 and 1.5 respectively.Replacement of phosphoric acid electrolyte by phosphosilicate gel paste enhances the peak power generation of the fuel cell by 133% at 120 ℃ cell temperature;increases the voltage generation in the ohmic regime and extends the maximum possible load current.Polyinyl alcohol(PVA) is used to bind the phosphosilicate gel powder and to form the hybrid crosslinked gel polymer electrolyte membrane.Soaking the membrane with phosphoric acid solution,instead of that with water improves the proton conductivity of the membrane,enhances the voltage and power generation by the fuel cell and extends the maximum possible operating temperature.At lower operating temperature of 70 ℃,peak power produced by phosphosilicate gel polymer electrolyte membrane fuel cell(PGMFC) is increased by 40% compared to that generated by phosphoric acid fuel cell(PAFC).However,the performance of composite membrane diminishes as the cell temperature increases.Thus phosphosilicate gel in paste form is found to be a good alternative of phosphoric acid electrolyte at medium operating temperature range while phosphosilicate gel-PVA composite offers performance enhancement at low operating temperatures.  相似文献   
60.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号