首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
化学   75篇
力学   9篇
数学   19篇
物理学   9篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   10篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2004年   2篇
  2002年   2篇
  1998年   1篇
  1993年   2篇
  1992年   2篇
排序方式: 共有112条查询结果,搜索用时 250 毫秒
31.
Mousavi MF  Jabbari A  Nouroozi S 《Talanta》1998,45(6):1247-1253
A new sensitive colour reaction for nitrite determination is presented. In acidic medium, nitrite was reacted with safranine to form a diazonium salt which caused the reddish-orange dye colour of the solution to change to blue. The carrier stream, into which the sample solution was injected, was doubly distilled water. The reagent solution stream, which contained safranine dye, hydrochloric acid and potassium chloride, was mixed with the carrier in a 3-m length of silicon tubing (bore 0.5 mm) maintained at 30°C in a thermostatic bath. The absorbance intensity was measured at 520 nm. The detection limit was 20 ng ml−1 and the RSD% of 20 injections of 1 μg ml−1 of nitrite was 0.65%. Analysis can be done at a rate of up to 30 h−1. Under the optimum conditions in the concentration range of 30–4000 ng ml−1 of nitrite ion, a linear calibration graph was obtained (r=0.9999). The method was applied successfully to the determination of nitrite in sausages.  相似文献   
32.
Water absorption, surface energetic, and friction coefficient of filled silicone rubber composites containing different amounts of a superadsorbent hydrogel, poly(acrylic acid) (PAA), were investigated. Measurements were performed in two different time windows, 1 and 5 weeks, to study the effect of hydration time on surface polarity of the samples. It was shown that water absorption increased consistently with hydrogel content and that prolongation of hydration time led to a marked increase in surface tension and polarity. Friction, as measured by a solid–solid contact method in phosphate buffer saline, showed strong dependence on polarity of the composite surface. Results demonstrate that the surface of the composite continued to evolve after the bulk had reached equilibrium swelling and the surface tension reached that of PAA after 5 weeks of hydration time.  相似文献   
33.
Summary: Monte Carlo method was used to simulate the degradation of porous PLA scaffolds. The simulated volume was assumed to be divided homogeneously between the pore and solid PLA with the ratio equal to the bulk porosity of the scaffold. The volume was divided into surface and bulk elements where the surface elements were in direct contact with the aqueous degradation medium, while the bulk elements were surrounded by the pore and solid PLA. The effect of degradation time on PLA ester groups and carboxylic acid end‐groups for surface and bulk elements, pH, PLA degradation rate and mass loss, and PLA molecular weight distribution was simulated. For surface elements, pH remained constant at 7.4 over the entire time of degradation, while for bulk elements its value decreased significantly to as low as 5.8. The highest drop in pH within the scaffold was observed for the highest porosity of 90%. There was a lag time of at least 7 weeks in the mass loss for surface as well as bulk elements for porosities ranging from 70 to 90%. The mass loss for bulk elements was considerably faster than the surface elements. This difference in the rate of mass loss between the surface and bulk elements could affect the 3D morphology and dimensional stability of the scaffold in vivo as degradation proceeds. The simulation predicts that, due to differences in the rate of bulk and surface degradation, hollow structures could form inside the scaffold after 19, 17, and 15 weeks for initial porosities of 70, 80, and 90%, respectively.

A schematic diagram illustrating the degradation of an element on the outer surface of the scaffold (surface element) versus an element within the volume of the scaffold (bulk element).  相似文献   

34.
Phosphoproteins are principle cellular protein components with diverse regulatory functions and phosphorylation is the most frequent post-translational modifications of proteins. Immobilized metal affinity electrophoresis (IMAEP) is a recently developed technique by which the phosphoprotein components of the cellular samples could be captured. We have made use of this new methodology to capture the whole phosphoproteins of zebrafish brain. Since the elution and resolution of captured phosphoproteins by this new methodology are not yet quite developed, we have tried to make this new methodology more efficient in (1) capturing phosphoproteins from biological samples and (2) elution and resolution of captured phosphoproteins. In this project, we first examined the captured phosphoproteins from zebrafish whole brain samples, as a mixture of phosphoproteins and non-phosphoproteins, examined and resolved the captured phosphoproteins by electrophoresis, and finally eluted them successfully from the gel. In this work, we provided an efficient methodology for the elution of captured phosphoproteins from the gel which is an important development in IMAEP in the analysis of phosphoprotein component of cellular samples and showed the possibility of elution of the captured phosphoproteins. The developed methodology will potentially have wide applications in profiling phosphoproteins from biological samples like zebrafish brain and also in studies about signal transduction systems.  相似文献   
35.
36.
The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface capturing, i.e. the Geometric Reconstruction Scheme (GRS), High Resolution Interface Capturing (HRIC) and Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM), are investigated for the advection of the VOF, both for Newtonian and non-Newtonian cases. The main purpose is to find the best method for the free surface capturing during the flow of a ceramic slurry described by a constitutive power law equation in the tape casting process. First the developed model is tested against well-documented and relevant solutions from literature involving free surface tracking and subsequently it is used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry modeled with the Ostwald de Waele power law. Results of the modeling are compared with corresponding experimental data and good agreement is found.  相似文献   
37.

This study introduces a new surface-renewable electrode based on a sol–gel derived graphene ceramic composite. The electrode was prepared by dispersing graphene nanosheets into a solution of the sol–gel precursors containing methyl triethoxysilane in methanol and hydrochloric acid. During hydrolysis of methyl triethoxysilane, the graphene nanosheets are trapped in the gel. After moulding and drying the composite, it can be used as a surface-renewable electrode to which we refer as a graphene ceramic composite electrode (GCCE). Cyclic voltammograms of the hexacyanoferrate(II/III) model redox system at the GCCE were compared to those obtained with a conventional carbon ceramic electrode and showed a highly improved electron transfer rate at the GCCE. The electrocatalytic oxidation of ascorbic acid as a model analyte was then studied at working potential of 50 mV and over the 3–84 μM concentration range. It revealed a sensitivity of 6.06 μA μM−1 cm−2 and a detection limit of 0.82 μM. The GCCE was successfully applied to the determination of ascorbic acid in orange juice and urine samples. Advantages such as good mechanical and chemical stability, ease of fabrication, and reproducible preparation make the GCCE a potentially useful and widely applicable renewable electrode for use in routine analysis.

(Left) FESEM image and photograph of the graphene ceramic composite electrode (GCCE); (right) the cyclic voltammogram of the renewable GCCE in 5 mM K3[Fe(CN)6] solution containing 0.1 M KNO3 at scan rate of 100 mV s−1

  相似文献   
38.
A facile, fast, and convenient route was suggested for the fabrication of Prussian blue nano particles (PBNPs) assembled on reduced graphene oxide (RGO) modified glassy carbon electrode (PBNPs|RGO|GCE). RGO was electrodeposited on the surface of GCE and the prepared RGO|GCE was immersed into a ferric‐hexacyanoferrate(III) solution and PBNPs were assembled on the RGO|GCE for a certain period of time. The PBNPs film thickness can be easily controlled by adjusting the assembling duration. The developed PBNPs|RGO|GCE was successfully used for determining hydrogen peroxide, with a linear response over the concentration range 0.5‐400 μM, a good accuracy and precision, detection limit 0.44 μM, and sensitivity 1168 mA M?1 cm?2.  相似文献   
39.
Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.  相似文献   
40.
gamma-Butyrolactone, unlike delta-valerolactone, does not polymerize despite a strain energy of approximately 8 kcal mol-1 which could be relieved by opening the s-cis lactone ester bond to an s-trans ester bond in the polymer. To explain this anomaly, we have applied quantum mechanical methods to study the thermochemistry involved in the ring-opening reactions of gamma-butyrolactone and delta-valerolactone, the conformational preferences of model molecules that mimic their corresponding homopolyesters, and the variation of enthalpy associated to the polymerizability of such two cyclic lactones. The overall results indicate that the lack of polymerizability of gamma-butyrolactone should be attributed to the low strain of the ring, which shows much less geometric distortion in the ester group than delta-valerolactone, and the notable stability of the coiled conformations found in model compounds of poly-4-hydroxybutyrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号