首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   18篇
  国内免费   5篇
化学   258篇
晶体学   4篇
力学   21篇
数学   63篇
物理学   47篇
  2023年   2篇
  2022年   9篇
  2021年   15篇
  2020年   19篇
  2019年   12篇
  2018年   20篇
  2017年   14篇
  2016年   32篇
  2015年   13篇
  2014年   24篇
  2013年   54篇
  2012年   25篇
  2011年   32篇
  2010年   13篇
  2009年   11篇
  2008年   21篇
  2007年   19篇
  2006年   16篇
  2005年   11篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1982年   3篇
  1978年   2篇
排序方式: 共有393条查询结果,搜索用时 0 毫秒
81.
Movahed S  Li D 《Electrophoresis》2011,32(11):1259-1267
This article presents a numerical study of the electrokinetic transport phenomena (electroosmosis and electrophoresis) in a three-dimensional nanochannel with a circular cross-section. Due to the nanometer dimensions, the Boltzmann distribution of the ions is not valid in the nanochannels. Therefore, the conventional theories of electrokinetic flow through the microchannels such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski slip velocity approach are no longer applicable. In the current study, a set of coupled partial differential equations including Poisson-Nernst-Plank equation, Navier-Stokes, and continuity equations is solved to find the electric potential field, ionic concentration field, and the velocity field in the three-dimensional nanochannel. The effects of surface electric charge and the radius of nanochannel on the electric potential, liquid flow, and ionic transport are investigated. Unlike the microchannels, the electric potential field, ionic concentration field, and velocity field are strongly size-dependent in nanochannels. The electric potential gradient along the nanochannel also depends on the surface electric charge of the nanochannel. More counter ions than the coions are transported through the nanochannel. The ionic concentration enrichment at the entrance and the exit of the nanochannel is completely evident from the simulation results. The study also shows that the flow velocity in the nanochannel is higher when the surface electric charge is stronger or the radius of the nanochannel is larger.  相似文献   
82.
The geometrical structure, binding energy, and vibrational spectra of small clusters of nitrosyl hydride (HNO) and water molecules, HNO(H2O) n , where (n = 1–4), have been investigated at the MP2 level of theory, using 6-311++G(2d,2p) basis set. We located three dimers, six trimers, nine tetramers, and three pentamers at the MP2/6-311++G(2d,2p) computational level. Particular attention is given to existence and magnitude of NH···O blue-shifting hydrogen bonds. Blue shifts of the NH stretching frequency upon complex formation in the ranges between 28 and 151 cm−1 is predicted. Cooperative effect in terms of stabilization energy along with the many-body interaction energies analysis was performed for the studied clusters. The Atoms in Molecules (AIM) theory was also applied to explain the nature of the complexes.  相似文献   
83.
This study presents the dielectrophoretic (DEP) assembly of multi‐walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT‐coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti‐mouse IgG surfaces.  相似文献   
84.
Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS3 experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).  相似文献   
85.
Biodegradable cell‐incorporated scaffolds can guide the regeneration process of bone defects such as physiological resorption, tooth loss, and trauma which medically, socially, and economically hurt patients. Here, 0, 5, 10, and 15 wt% fluoridated hydroxyapatite (FHA) nanoparticles containing 25 wt% F? and 75 wt% OH? were incorporated into poly(ε‐caprolactone) (PCL) matrix to produce PCL/FHA nanocomposite scaffolds using electrospinning method. Then, scanning electron microscopy (SEM), X‐ray diffraction (XRD) pattern, and Fourier transform infrared spectroscopy (FTIR) were used to evaluate the morphology, phase structure, and functional groups of prepared electrospun scaffolds, respectively. Furthermore, the tensile strength and elastic modulus of electrospun scaffolds were investigated using the tensile test. Moreover, the biodegradation behavior of electrospun PCL/FHA scaffolds was studied by the evaluation of weight loss of mats and the alternation of pH in phosphate buffer saline (PBS) up to 30 days of incubation. Then, the biocompatibility of prepared mats was investigated by culturing MG‐63 osteoblast cell line and performing MTT assay. In addition, the adhesion of osteoblast cells on prepared electrospun scaffolds was studied using their SEM images. Results revealed that the fiber diameter of prepared electrospun PCL/FHA scaffolds alters between 700 and 900 nm. The mechanical assay illustrated the mat with 10 wt% FHA nanoparticles revealed the highest tensile strength and elastic modulus. The weight loss alternation of mats determined around 1% to 8% after 30 days of incubation. The biocompatibility and cell adhesion of mats improved by increasing the amounts of FHA nanoparticles.  相似文献   
86.
A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid–fluid heat, fluid–solid heat, and fluid—high‐energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well‐characterized polymer‐based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit‐pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non‐specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non‐specific interactions.  相似文献   
87.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   
88.
Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneration and low solvent losses. Unfortunately, TEG absorbs significantly more hydrocarbons and acid gases than EG or DEG. Quantifying this amount of absorption is therefore critical in order to minimize hydrocarbon losses or to optimize hydrocarbon recovery depending on the objective of the process. In this article, a new correlation that fully covers the operating ranges of TEG dehydration units is developed in order to determine the solubility of light alkanes and acid gases in TEG solvent. The influence of several parameters on hydrocarbon and acid gas solubility including temperature, pressure, and solvent content is also examined.  相似文献   
89.
Polymerization of 1‐hexene was carried out using a mononuclear (MN) catalyst and two binuclear (BN1 and BN2) α‐diimine Ni‐based catalysts synthesized under controlled conditions. Ethylaluminium sesquichloride (EASC) was used as an efficient activator under various polymerization conditions. The highly active BN2 catalyst (2372 g poly(1‐hexene) (PH) mmol?1 cat) in comparison to BN1 (920 g PH mmol?1 cat) and the MN catalyst (819 g PH mmol?1 cat) resulted in the highest viscosity‐average molecular weight (Mv) of polymer. Moreover, the molecular weight distribution (MWD) of PH obtained using BN2/EASC was slightly broader than those obtained using BN1 and MN (2.46 for BN2 versus 2.30 and 1.96 for BN1 and MN, respectively). These results, along with the highest extent of chain walking for BN2, were attributed to steric, nuclearity and electronic effects of the catalyst structures which could control the catalyst behaviour. Differential scanning calorimetry showed that the glass transition temperatures of polymers were in the range ? 58 to ?81 °C, and broad melting peaks below and above 0 °C were also observed. In addition, longer α‐olefins (1‐octene and 1‐decene) were polymerized and characterized, for which higher yield, conversion and molecular weight were observed with a narrower MWD. The polymerization parameters such as polymerization time and polymerization temperature showed a significant influence on the productivity of the catalysts and Mv of samples.  相似文献   
90.
Vitamin C is known as an essential dietary supplement and implicated in diverse biological processes. We present here a theoretical study on the nature of hydrogen bonding of vitamin C in biological systems. For this reason, the complexes of vitamin C (VC) with neutral and zwitterionic L-alanine (as the simplest chiral amino acid) were studied at the MP2/6-311++G(d,p) level of theory. In the gas phase, neutral L-alanine leads to more stable complexes than the zwitterionic forms while the reverse is true in the aqueous phase. The complexes are formed via two hydrogen bond interactions, which result in a ring-like hydrogen-bonded networks. The nature of H-bonds was characterized in terms of natural bond orbital and quantum theory of atoms in molecule analyses (QTAIM). The H-bonds in the studied complexes were electrostatic in nature; however, in the case of shorter and directional H-bonds and ionic interactions, contributions of covalent character were also non-negligible. Natural energy decomposition analysis of hydrogen-bonded complexes reveals that the charge transfer and electrical components are the largest contributors for the interaction energies of complexes. Natural resonance theory analysis suggests higher resonance weight for charge-assisted interactions of vitamin C---alanine (zwitterionic) complexes, where the total interaction energy is considerably higher than that of neutral alanine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号